Welcome!

Industrial IoT Authors: Elizabeth White, Stackify Blog, Yeshim Deniz, SmartBear Blog, Liz McMillan

Blog Feed Post

It’s Time To Get Serious About Big Data Security

By

Over the last few years, we have witnessed a substantial amount of buzz about Big Data, and we have seen the large-scale adoption of Big Data analytics solutions. Organizations are collecting and analyzing massive amounts of data in a way that most were unable to do ten years ago. Pattern recognition, non-obvious relationship detection, graph analysis, predictive processing, and other analytical approaches can enable our organizations to turn oceans of data into knowledge, allowing us to make the best use of the data that we have.

At the same time, there exists an ever-growing concern that revolves around the security and protection of the information that we are analyzing. As we watch the explosive growth of data that we are processing from multiple disparate data sources, our IT environments are growing increasingly more complex, and we are witnessing new challenges related to data management, security, and privacy. Many organizations are now required to enforce access control and privacy restrictions in order to meet data and privacy regulations, and these same organizations face steep penalties and fines for non-compliance. At the same time, data security breaches (both from the insider and outsider) are on the rise, and a study released this year by Symantec and the Ponemon institute found that the average organizational cost of one security breach in the United States is 5.4 million dollars. Civil court records show a growing list of organizations that have faced millions of dollars in lawsuits related to their exposure of information, and new studies are showing that most organizations are not prepared to respond to the fallout.

So what does that mean for organizations focusing on Big Data? With evolving cyber security threats, growing security and privacy concerns, the reality of insider attacks, and the legal and regulatory requirements that many organizations face, it means that we need to start getting serious about Big Data Security. It’s an issue – but one that many organizations haven’t thought about.

Although security and privacy issues related to Big Data are starting to get more attention in the mainstream media, the issues are not new – many of these concerns have been documented in academic papers in the Data Mining and Knowledge Discovery communities for decades. As distributed analytics technologies have become more prevalent and available in recent years, these concerns that were once raised in academia are now being realized in Big Data implementations.

Further complicating the matter is that many Big Data platforms, like Apache Hadoop, were not originally designed with security in mind. Many security professionals over the years have highlighted challenges related to Hadoop’s security model, and as a result there has been an explosive growth in security-focused tools that complement Hadoop offerings, with products like Cloudera SentryIBM InfoSphere Optim Data MaskingIntel’s secure Hadoop distributionDataStax EnterpriseDataGuise for HadoopProtegrity Big Data Protector for HadoopRevelytix LoomZettaset Secure Data Warehouse — and the list could go on. At the same time, Hadoop’s security model is slowly evolving to meet some of these security challenges because of some great work happening in the source community.

Regardless of your Big Data platform, however, there are some critical steps that organizations must do in order to understand and be prepared for Big Data security challenges.

  1. Identify and understand the sensitivity levels of your data. In order to understand the challenges, it is critical to understand the sensitivity levels of your data and the access control policies associated with your data. The sensitivity levels of your information will drive your security strategy. In some cases, it may be necessary to filter access to the data retrieved by data scientists and analysts running jobs and queries, based on what they are allowed to see. As data sets from different information sources are combined with others for processing – where each data set may have inherent access control policies – defining and enforcing the access control policies on the combined sets can become a tricky problem.
  2. Understand the impact of the release of your data. Even organizations that are careful to strip out sensitive information from data sets that they release to their business partners are finding that their data sets are vulnerable to attacks related to differential privacy, and many companies have learned this the hard way. A few years ago, for example, Netflix anonymized movie ratings of about 480,000 customers, and held a contest, offering 1 million dollars for the contestant who could improve their “Recommended for You” movie suggestions. A few researchers found that by combining anonymous ratings in the Netflix data set with public ratings in the IMDB data set, they could successfully de-anonymize the ratings of many viewers, exposing information about the sexual interests, political leanings, and religious views of many viewers. The publication of their findings led to a multi-million dollar lawsuit against Netflix, which Netflix later settled.
  3. Develop policies & procedures related to Big Data Security and Privacy. These will vary from organization to organization, based on the sensitivity levels and inherent release policies of your data, but should include policies and procedures related to data ingest and release, access control within the organization, data destruction and sanitation, monitoring procedures, and policies and procedures for incident response.   
  4. Develop and execute a technical security approach that complements the security of your analytics platforms.  Security controls on many Big Data platforms aren’t providing the amount of security that some of our organizations need.  Requirements for authorization at the data level, on-disk encryption, and integration with Identity and Access Management infrastructure, as well as  proactive monitoring of your data (just to name a few) often need to be solved by tools that complement your analytics platform. Many times, certain requirements may involve the integration of third party encryption solutions into your analytics platforms or the use of other tools built on top of them to satisfy other requirements (Apache Accumulo provides cell-based authorization over top of Hadoop, for example). Because of concerns related to security, some organizations segregate their analytics clusters on their internal networks, and provide perimeter access control to authorized users. While this certainly provides a certain level of protection, it doesn’t provide authorization at the data level mandated by some organizations. Because of the complexity of distributed analytics platforms, security configuration is often tricky and complex.  Developing security solutions for analytics platforms therefore requires much attention to detail, a certain degree of creativity, and requires that you develop a security approach that revolves around the security policies of your organization and data.

These steps towards “getting serious about Big Data Security” are extremely necessary in our interconnected digital world, where the cost of data breaches are rising, and the penalties of not protecting our information are steep –  they certainly affect our organization’s budget outlook, but more importantly, security breaches will affect our reputation.  As security and privacy concerns around Big Data continue to attract attention, look for much innovation to occur in this exciting technology space.

About the Author

Kevin T. Smith is the Director of Technology Solutions and Outreach for the Applied Mission Solutions division of Novetta Solutions, where he provides strategic technology leadership and develops innovative, data-focused and highly-secure solutions for customers. He is the author of numerous technology articles, including a recent article at InfoQ : Big Data Security – The Evolution of Hadoop’s Security Model. He has authored many technology books, including the upcoming book Professional Hadoop Solutions (Wrox Press) as well as Applied SOA: Service-Oriented Architecture and Design Strategies (Wiley), The Semantic Web: A Guide to the Future of XML, Web Services, and Knowledge Management (Wiley), and many others. He can be reached at [email protected].

Read the original blog entry...

More Stories By Bob Gourley

Bob Gourley writes on enterprise IT. He is a founder of Crucial Point and publisher of CTOvision.com

IoT & Smart Cities Stories
The challenges of aggregating data from consumer-oriented devices, such as wearable technologies and smart thermostats, are fairly well-understood. However, there are a new set of challenges for IoT devices that generate megabytes or gigabytes of data per second. Certainly, the infrastructure will have to change, as those volumes of data will likely overwhelm the available bandwidth for aggregating the data into a central repository. Ochandarena discusses a whole new way to think about your next...
DXWorldEXPO LLC announced today that Big Data Federation to Exhibit at the 22nd International CloudEXPO, colocated with DevOpsSUMMIT and DXWorldEXPO, November 12-13, 2018 in New York City. Big Data Federation, Inc. develops and applies artificial intelligence to predict financial and economic events that matter. The company uncovers patterns and precise drivers of performance and outcomes with the aid of machine-learning algorithms, big data, and fundamental analysis. Their products are deployed...
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...
All in Mobile is a place where we continually maximize their impact by fostering understanding, empathy, insights, creativity and joy. They believe that a truly useful and desirable mobile app doesn't need the brightest idea or the most advanced technology. A great product begins with understanding people. It's easy to think that customers will love your app, but can you justify it? They make sure your final app is something that users truly want and need. The only way to do this is by ...
CloudEXPO | DevOpsSUMMIT | DXWorldEXPO are the world's most influential, independent events where Cloud Computing was coined and where technology buyers and vendors meet to experience and discuss the big picture of Digital Transformation and all of the strategies, tactics, and tools they need to realize their goals. Sponsors of DXWorldEXPO | CloudEXPO benefit from unmatched branding, profile building and lead generation opportunities.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Cell networks have the advantage of long-range communications, reaching an estimated 90% of the world. But cell networks such as 2G, 3G and LTE consume lots of power and were designed for connecting people. They are not optimized for low- or battery-powered devices or for IoT applications with infrequently transmitted data. Cell IoT modules that support narrow-band IoT and 4G cell networks will enable cell connectivity, device management, and app enablement for low-power wide-area network IoT. B...
The hierarchical architecture that distributes "compute" within the network specially at the edge can enable new services by harnessing emerging technologies. But Edge-Compute comes at increased cost that needs to be managed and potentially augmented by creative architecture solutions as there will always a catching-up with the capacity demands. Processing power in smartphones has enhanced YoY and there is increasingly spare compute capacity that can be potentially pooled. Uber has successfully ...
SYS-CON Events announced today that CrowdReviews.com has been named “Media Sponsor” of SYS-CON's 22nd International Cloud Expo, which will take place on June 5–7, 2018, at the Javits Center in New York City, NY. CrowdReviews.com is a transparent online platform for determining which products and services are the best based on the opinion of the crowd. The crowd consists of Internet users that have experienced products and services first-hand and have an interest in letting other potential buye...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...