Welcome!

Industrial IoT Authors: William Schmarzo, Elizabeth White, Stackify Blog, Yeshim Deniz, SmartBear Blog

Blog Feed Post

[misc][2b2k] Why ontologies make me nervous

A few days ago there was a Twitter back and forth between two people I deeply respect: Dan Brickley [twitter:danbri] and Ed Summers [twitter:edsu]. It started with Ed responding to a tweet about a brief podcast I did with Kevin Ford [twitter:3windmills], who is on the team working on BibFrame:

After a couple of tweets, Dan tweeted the following:


There followed some agreement that it's often helpful to have apps driving the development of standards. (Kevin agrees with this, and points to BibFrame's process.) But, Dan's comment clarified my understanding of why ontologies make me nervous.

Over the past hundred years or so, we've come to a general recognition that all classifications and categorizations are tools, not representations of The Real Order. The periodic table of the elements is a useful way of organizing information, and manifests real relationships among the elements, but it is not the single "real" way the elements are arranged; if you're an economist or an industrialist, a chart that arranges the elements based on where they exist on our planet might be just as valid. Likewise, Linneaus' classification scheme is useful and manifests some real relationships, but if you're a chef you might have a different way of carving up the animal kingdom. Linneaus chose to organize species based upon visible differences — which might not be the "essential" differences — so that his scheme would be useful to scientists in the field. Although he was sometimes ambiguous about this, he seems not to have thought that he was discerning God's own order. Since Linnaeus we have become much more explicit in our understanding that how we classify depends on what we're trying to accomplish.

For example, a DTD (document type definition) typically is designed not to capture the eternal essence of some type of document, but to make the document more usable by systems that automate the document's production and processing. For example, an industry might agree on a DTD for parts catalogs that specifies that a parts catalog must have an element called "part" and that a part must have a type, part number, length, height, weight, material, and a description, and optionally can note whether it turns clockwise or counterclockwise. Each of these elements would have a standard name (e.g., "part_number," not "part#"). The result is a document that describes parts in a standard way so that a company can receive descriptions from all of its suppliers and automatically build a database of the parts it uses.

A DTD therefore is designed with an eye toward what properties are going to be useful. In some industries, it might include a term that captures how shiny the part is, but if it's a DTD for surgical equipment, that may not be relevant enough to include...although "sanitary_packaging" might be. Likewise, how quickly a bolt transfers heat might seem irrelevant, at least until NASA places an order. In this DTD's are much like forms: You don't put a field for earlobe length in the college application form you're designing.

Ontologies are different. They can try to express the structure of a domain independent of any particular use, so that the widest variety of applications can share data, including apps from domains outside of the one that's been mapped. So, to use Dan's example, your ontology of jobs would note that jobs have employers and workers, that they may have a salary or other form of compensation, that they can be part-time, full-time, seasonal, etc. As an ontology designer, because you're trying to think beyond whatever applications you already can imagine, your aim (often, not always) is to provide the fullest possible set of slots just in case someone sometime needs that info. And you will carefully describe the relationships among the elements so that apps and researchers can use knowledge that is implicit in the model.

The line between DTD's and ontologies is fuzzy. Many ontologies are designed with classes of apps in mind, and some DTD's have tried to be hugely general purpose. My discomfort really comes down to a distrust of the concept of "knowledge representation" that underlies some ontologies (especially earlier ones). The complexity of the relationships among parts will always outstrip our attempts to capture and codify those relationships. Further, knowledge cannot be fully represented because it isn't a thing apart from our continuous invention, discovery, and engagement with it.

What it comes down to is that if you talk about ontologies as knowledge representations I'll mutter something under my breath and change the topic.

Read the original blog entry...

More Stories By David Weinberger

David is the author of JOHO the blog (www.hyperorg.com/blogger). He is an independent marketing consultant and a frequent speaker at various conferences. "All I can promise is that I will be honest with you and never write something I don't believe in because someone is paying me as part of a relationship you don't know about. Put differently: All I'll hide are the irrelevancies."

IoT & Smart Cities Stories
Bill Schmarzo, Tech Chair of "Big Data | Analytics" of upcoming CloudEXPO | DXWorldEXPO New York (November 12-13, 2018, New York City) today announced the outline and schedule of the track. "The track has been designed in experience/degree order," said Schmarzo. "So, that folks who attend the entire track can leave the conference with some of the skills necessary to get their work done when they get back to their offices. It actually ties back to some work that I'm doing at the University of San...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science," is responsible for setting the strategy and defining the Big Data service offerings and capabilities for EMC Global Services Big Data Practice. As the CTO for the Big Data Practice, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He's written several white papers, is an avid blogge...
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...
If a machine can invent, does this mean the end of the patent system as we know it? The patent system, both in the US and Europe, allows companies to protect their inventions and helps foster innovation. However, Artificial Intelligence (AI) could be set to disrupt the patent system as we know it. This talk will examine how AI may change the patent landscape in the years to come. Furthermore, ways in which companies can best protect their AI related inventions will be examined from both a US and...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
Chris Matthieu is the President & CEO of Computes, inc. He brings 30 years of experience in development and launches of disruptive technologies to create new market opportunities as well as enhance enterprise product portfolios with emerging technologies. His most recent venture was Octoblu, a cross-protocol Internet of Things (IoT) mesh network platform, acquired by Citrix. Prior to co-founding Octoblu, Chris was founder of Nodester, an open-source Node.JS PaaS which was acquired by AppFog and ...
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...