Welcome!

XML Authors: Elizabeth White, Liz McMillan, Ignacio M. Llorente, Carmen Gonzalez, David Dossot

Related Topics: SOA & WOA, Java, XML, Virtualization, Web 2.0, Cloud Expo, Security

SOA & WOA: Article

Cloud-Friendly BPM: The Power of Hypermedia-Oriented Architecture

We must bring together the worlds of SOA, BPM, Cloud, REST, and HOA.

When ZapThink last wrote about Business Process Management (BPM) in the Cloud in March 2012, we challenged both vendors and BPM customers to rethink their approach to BPM software, eschewing a heavyweight middleware approach for the lightweight, hypermedia-oriented approach that Representational State Transfer (REST) encourages. And while we did generate some short-lived buzz, most of the response - or lack thereof - was little more than a resounding silence.

True, work on Cloud-friendly, REST-based BPM continues in certain dusty corners of academia, most notably in the research of Cesare Pautasso, a professor at the University of Lugano in Switzerland. But in spite of his notable contributions to Thomas Erl's SOA with REST book, the enterprise software and Cloud marketplaces have largely either ignored or misunderstood his research as well as ZapThink's on this topic.

While it's amusing to theorize a vast vendor conspiracy, positing middleware dinosaurs actively working to distract their customer base from lighter weight, Cloud-friendly approaches, the reality is likely to be far more mundane. People just don't get it. Or to be precise, our audience doesn't get how all the pieces-BPM, REST, Cloud, and even a bit of SOA-fit together. To help resolve this confusion, let's resort to an age-old technique: let's draw some pictures.

Framing the Cloud-Friendly BPM Problem
Let's start this discussion with an illustration of an admittedly simplistic business process involving one person and some back-end system, as shown in Figure 1 below.

Figure 1: Simple Two-Tier Process

Note that in the figure above, the user might tackle a few tasks, and then the server takes over, executing a few tasks on its own. While the server is busy doing its thing, the user might query the server as to the current status of the process.

So far so good, but we don’t want our server to serve only one user at a time. After all, the whole point of the client/server pattern is that it is many to one. As a result, we need to introduce the notion of a process instance. For the sake of simplicity let’s assume that we don’t have more than one person participating in a particular instance at the same time. But we might have multiple people each running their own instance of a process, for example, completing a purchase on a Web site, as shown in Figure 2 below.

Figure 2: Two Tier Process with Instance

In the figure above, the BPM engine running on the server spawns a process instance to deal with the interactions with the user. If multiple users initiate the same process, the server can instantiate as many process instances as necessary, and the engine keeps track of where every user is in their instance—in other words, the instance state.

How to keep track of all this state information in a scalable, robust manner is at the core of numerous distributed computing challenges. Today’s BPM engines generally run on Enterprise Service Buses (ESBs), which maintain state by spawning threads—short-lived, specialized object instances that run in the execution environment of the ESB. But while threads are short-lived, process instances might take days or weeks to complete, and furthermore, threads are specific to the execution environment, making cross-ESB processes difficult to implement. For these reasons, we call state management the Achilles Heel of traditional, heavyweight (Web Services-based) SOA.

If such ESB-centric issues weren’t bad enough, the Cloud introduces a new wrinkle. Because we want to run our server in the Cloud, we don’t want to use it to maintain any state information, because we expect virtual machine (VM) instances to fail. In the Cloud, we provide automated recovery from failure rather than avoiding failure. However, if we store all the state information in the underlying persistence tier (not shown), then we limit our scalability, since every time anyone clicks a link, we must update a database somewhere.

What we need is a better way of dealing with state information that both allows our BPM engines to be Cloud friendly, and also frees us from the limitations of our ESBs. Or perhaps we must reinvent our ESBs to work in the Cloud. However you slice the problem, Hypermedia-Oriented Architecture (HOA) has the answer.

HOA to the Rescue
As ZapThink has discussed before, many people misconstrue REST as an API style that features a uniform interface, where in reality it’s a style of software architecture for building hypermedia systems. Why is the latter definition a better one? Because Roy Fielding, its creator, says so. That being said, work continues on the architectural context of REST, perhaps extending Fielding’s original thinking, as well as beyond the API style that most techies think of when they think about REST. We call this extension of the REST architectural style Hypermedia-Oriented Architecture, or HOA.

The central principle of HOA is the HATEOAS REST constraint: hypermedia is the engine of application state. In essence, HOA separates two different types of state information: application state and resource state. Application state corresponds to the user’s place in the runtime workflow consisting of hyperlinked representations, while resource state remains on the server, keeping track of persisted state information and state information that multiple users share.

On the one hand, HATEOAS requires hypermedia to manage all state information specific to individual clients, and on the other hand, delegates all other state information to the server. REST also specifies a set of verbs for querying an changing state information: GET for querying resource state without changing it, and three verbs that change the resource state: POST for initializing a resource, PUT for updating a resource, and DELETE for deleting a resource (assuming we’re using HTTP as our transport protocol).

Note, therefore, that all verbs other than GET change the resource state, while all verbs, including GET, change the application state. Furthermore, all state information appears in the messages between client and server: the requests from client to resource, and the representations from resource to client. By extension, HATEOAS requires us to only use POST, PUT, or DELETE when—and only when—we must update resource state.

With this principle in mind, we have a real problem with the process in Figure 2. Note that the server is maintaining application state, which HOA forbids. But we can’t solve this problem simply by picking up the process instance from the server and sticking it in the client and expecting it to work properly, because sometimes we really do want to update the resource state. We somehow need to separate the process instance into two (or more) pieces so that hypermedia on the client can be the engine of application state while the BPM engine remains the engine of resource state.

Figure 3 below illustrates this principle. The client sends a POST to the server, which initializes a resource. In this case, that new resource sends a hypermedia representation to a stateless intermediary which caches the representation. This hypermedia representation is essentially an abstraction of a dynamic set of hyperlinked representations, for example, one or more php scripts that can generate a set of hyperlinked Web pages. Once the intermediary has the hypermedia representation, it returns the initial representation (for instance, a Web page) to the client.

Figure 3: HOA-Based Process with Stateless Intermediary

From that point on, as long as the client is navigating the application via hypermedia, changing only the application state as the user moves from one step in the process to the next, there is no need to change the resource state—and thus, no further POSTs, PUTs, or DELETEs are allowed. The client may perform a GET, because GETs change only the application state. The intermediary may be able to handle the GET on its own (if the necessary information is resident in the cache) or can turn around and perform a GET on an underlying resource, if necessary.

Furthermore, the application state may change without any interactions with the intermediary or the server by leveraging programmatic capabilities on the client. If the client is an arbitrary piece of software then this capability is trivial. But even if the client is a browser, it’s possible to change the state of an application without fetching anything from the server. In fact, there are many was to accomplish this feat.

Sometimes, of course, a hypermedia application, which we might also call a HOA process, must update resource state, for example, when it’s time to process the user’s credit card or change the number of widgets in inventory. Then—and only then—do we perform a PUT.

The most important characteristic of the process in Figure 3 is the fact that the intermediary is entirely stateless. If for some reason the VM that is hosting the hypermedia representation that is serving the client crashes, the Cloud environment must simply spawn a replacement and reload the same hypermedia representation as before. The client won’t lose its place because the hypermedia on the client are maintaining the application state. Similarly, we can horizontally scale the middle tier however and whenever we like. Instead of one VM hosting a particular hypermedia representation, we could have two or a hundred, and it doesn’t matter which one responds to a particular GET from the client.

Combining HOA Processes and Traditional BPM
The problem with the example in Figure 3, of course, is that every client’s process is separate from every other client’s process. However, most business processes in today’s organizations involve multiple parties—either multiple people or multiple enterprise applications or some combination.

On first glance, HOA doesn’t address such complex processes, since HATEOAS only deals with application state, not resource state. Fortunately, HOA works perfectly fine in this broader context as well, because it calls for a separation of application and resource state while providing for multiple ways to update resource state. After all, POST, PUT, and DELETE all update resource state, and any user can execute these verbs for a particular resource. Figure 4 below illustrates this more complex process.

Figure 4: HOA Process with Composite RESTful Service

In the figure above, a POST from a client instructs the BPM engine to instantiate a process instance on the server as in Figure 2. The first step in this process creates a hypermedia representation for the client to interact with as in Figure 3. Meanwhile, the resource state may change via any event, including a server-generated event or the action of a different user. If a user executes a PUT on the client to the hypermedia representation on the intermediary, then that representation turns around and PUTs to the appropriate underlying resource. Or perhaps the client PUTs to an underlying resource directly. Either way, the PUT goes to a hyperlink the client obtained from a previous representation at an earlier step in the process.

We might call the process running on the server a Composite RESTful Service, because the intermediary may abstract the entire server-based process via one or more RESTful URIs. A simple example of a Composite RESTful Service is a chat window application. Multiple users share the same chat session, so clearly the chat session state is part of the resource state.

There are a few essential points to keep in mind about the illustration in Figure 4. First, the intermediary remains stateless and therefore Cloud-friendly. We must maintain resource state in the persistence tier, but since we’ve offloaded the maintenance of application state to the client, we won’t be overburdening our database. We may also interact with our Composite RESTful Service via RESTful interactions, an essential benefit that Prof. Pautasso emphasizes in his research. And finally, not only is the middle tier horizontally scalable and elastic, so is the client tier—because every user brings their own client to the process.

The ZapThink Take
With the addition of an appropriate approach to building a RESTful Service abstraction, Figure 4 also serves as an illustration of how to implement RESTful SOA, what ZapThink refers to as “next generation” SOA in our Licensed ZapThink Architect (LZA) course as well as in my new book, The Agile Architecture Revolution. We therefore have a single, simple diagram bring together the worlds of SOA, BPM, Cloud, REST, and HOA.

The secret to getting all these architectural trends to work well together centers on how we deal with state information. We must first separate application state from resource state, and then subsequently take the conceptual leap to understanding that the best way to implement our business processes is by combining HOA processes with Composite RESTful Services. Once we make this leap, however, the pieces of this complicated puzzle finally fall into place.

Image credit: Bruce Guenter

More Stories By Jason Bloomberg

Jason Bloomberg is the leading expert on architecting agility for the enterprise. As president of Intellyx, Mr. Bloomberg brings his years of thought leadership in the areas of Cloud Computing, Enterprise Architecture, and Service-Oriented Architecture to a global clientele of business executives, architects, software vendors, and Cloud service providers looking to achieve technology-enabled business agility across their organizations and for their customers. His latest book, The Agile Architecture Revolution (John Wiley & Sons, 2013), sets the stage for Mr. Bloomberg’s groundbreaking Agile Architecture vision.

Mr. Bloomberg is perhaps best known for his twelve years at ZapThink, where he created and delivered the Licensed ZapThink Architect (LZA) SOA course and associated credential, certifying over 1,700 professionals worldwide. He is one of the original Managing Partners of ZapThink LLC, the leading SOA advisory and analysis firm, which was acquired by Dovel Technologies in 2011. He now runs the successor to the LZA program, the Bloomberg Agile Architecture Course, around the world.

Mr. Bloomberg is a frequent conference speaker and prolific writer. He has published over 500 articles, spoken at over 300 conferences, Webinars, and other events, and has been quoted in the press over 1,400 times as the leading expert on agile approaches to architecture in the enterprise.

Mr. Bloomberg’s previous book, Service Orient or Be Doomed! How Service Orientation Will Change Your Business (John Wiley & Sons, 2006, coauthored with Ron Schmelzer), is recognized as the leading business book on Service Orientation. He also co-authored the books XML and Web Services Unleashed (SAMS Publishing, 2002), and Web Page Scripting Techniques (Hayden Books, 1996).

Prior to ZapThink, Mr. Bloomberg built a diverse background in eBusiness technology management and industry analysis, including serving as a senior analyst in IDC’s eBusiness Advisory group, as well as holding eBusiness management positions at USWeb/CKS (later marchFIRST) and WaveBend Solutions (now Hitachi Consulting).

@ThingsExpo Stories
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.
SYS-CON Events announced today that Windstream, a leading provider of advanced network and cloud communications, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Windstream (Nasdaq: WIN), a FORTUNE 500 and S&P 500 company, is a leading provider of advanced network communications, including cloud computing and managed services, to businesses nationwide. The company also offers broadband, phone and digital TV services to consumers primarily in rural areas.
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com), moderated by Ashar Baig, Research Director, Cloud, at Gigaom Research, Nate Gordon, Director of T...