Welcome!

Industrial IoT Authors: Elizabeth White, Pat Romanski, Liz McMillan, Jeev Trika, Scott Allen

Related Topics: Java IoT, Industrial IoT, Microservices Expo, IBM Cloud, Weblogic, IoT User Interface, Apache

Java IoT: Article

Componentizing a Monolithic Application in Java

Using a simple homegrown component model and framework

Component-oriented development has many architectural advantages. In spite of this, many developers tend to solve problems the monolithic way on the first go. This article demonstrates how a monolithic design can be modified to achieve component-based design. During this conversion process, the necessity of Component Models and Frameworks are highlighted. The article demonstrates the componentization of an example monolithic application using a simple homegrown component model and framework developed by the authors.

Introducing E-Store - A Business Application
Let us assume that we need to implement a simple E-store business application. The application needs to cater to the following simple business use cases for a single actor - the consumer.

  • Browse the catalog of products - Consumer can browse through the items in the store. E-store app displays the different products available in the store along with their price
  • Buy one or more products - User adds one or more quantities of a product to the shopping cart. If sufficient stock is available, E-Store app adds the selected items to the shopping cart
  • Check-out - User can checkout with the items in the shopping cart. E-store app displays the total price of all the items in the shopping cart. Subsequently, stock quantities of the purchased items are reduced

Monolithic Implementation of E-Store
The E-Store application explained above can be realized with the help of the classes shown in Figure 1.

Figure 1: Class Diagram for E-Store Application

The implementation of the above design in source code and binary code form can be obtained from the links provided at the end of the article. The implementation of the monolithic application is explained briefly in the sections below.

Application Startup - UI
The monolithic E-Store application starts up with the UI class main method. During its startup, the UI class instantiates the Store (E-Store) class. The code snippet corresponding to this is shown in Listing 1.

public class UI {

static Store estore = new Store();

public static void main(String[] args) {
int userChoice = mainMenu();
...
}
...
}

Listing 1: Startup Code - UI Class

The E-Store class instantiates the Inventory and ShoppingCart classes during its startup as shown in Listing 2.

public class Store {

Inventory inventory = new Inventory();
ShoppingCart shoppingCart = new ShoppingCart();
...
}

Listing 2: Startup Code - E-Store Class

The inventory class initializes the stock during its instantiation, by creating instances of Product class objects. The code snippet is shown in Listing 3

public class Inventory {

private Map<Product, Integer> stock = new HashMap<Product, Integer>();

public Inventory() {initStock();}

private void initStock() {
Product newIPad = new Product("NewIPad", 400.00);
stock.put(newIPad, 50);

Product galaxyTab2 = new Product("GalaxyTab2", 300.00);
stock.put(galaxyTab2, 75);

Product kindleFire = new Product("KindleFire", 250.00);
stock.put(kindleFire, 30);
}
...

}

Listing 3: Startup Code - Inventory Initialization

Once the startup is done, the UI class presents a console based menu as shown in Listing 4.

Welcome to eStore!
------------------------

1. Browse Catalog
2. Buy Items
3. Check Out
4. Exit

Choose an option:
1

Listing 4: Console based UI Menu

When the user chooses any one of the options, the UI class calls upon its implementation in the E-Store business class. The implementation of each of these is explained briefly in next few sections.

Browse Catalog Use case Realization
The getCatalog() method in the E-Store class implements this use case. When the getCatalog() method in E-Store class is called, it fetches the list of products from Inventory and returns the same. Code snippet is shown in Listing 5.

public Collection<Product> getCatalog() {

return inventory.getProducts();

}

Listing 5: E-Store Class - getCatalog() implementation

Buy Items Use case Realization
The buyItem() method in the E-Store class implements this use case. The UI class calls this method by passing the name of the product chosen by the user, and the quantity he wants to buy. If sufficient quantity is available in stock, the item is added to the shopping cart and the method returns success; otherwise, the method returns failure and no item is added to shopping cart. The code snippet is presented in Listing 6.

public boolean buyItem(String name, int quantity) {
Product product = inventory.getProduct(name);
if (product == null) return false;

if (inventory.getStock(product) >= quantity) {
shoppingCart.addItem(product, quantity);
return true;
}
return false;
}

Listing 6: E-Store Class - buyItem() implementation

Check Out Use Case Realization
The checkout() method in the E-Store class implements this use case. It reduces the stock in the inventory by the quantity bought. It also returns the total price to be paid by the user. This implementation is shown in Listing 7.

public double checkOut() {
for(Product product : shoppingCart.getItems()) {
int quantity = shoppingCart.getCount(product);
inventory.reduceStock(product, quantity);
}
double price = shoppingCart.getTotalPrice();
shoppingCart.clearItems();
return price;

}

Listing 7: E-Store Class - checkOut() Implementation

What's wrong with the Monolithic implementation?
The initial implementation of E-Store discussed above fulfills all the functional requirements of the application laid down earlier. Still this is not considered as architecturally sound application design because all the classes in the application are tightly coupled to each other. Consider the dependency metrics shown in the table below:

Table 1: Class dependency details

No.

Class

Depends On

# of Dependencies

Dependency Depth

1.

Product

 

0

0

2.

Inventory

Product

1

1

3.

ShoppingCart

Product

1

1

4.

EStore

Inventory, ShoppingCart, Product

3

2

5.

UI

EStore, Product

2

3

 

 

 

 

 

The tight coupling results in high resistance to change in implementation. For example, any change to Product class will require complete change in the application.

Let us say that the E-Store likes to announce promotional sale for three days. During these three days, the total price of the shopping cart should be discounted by 10%. In order to achieve this, we need to change the ShoppingCart class implementation. When the ShoppingCart class is changed, the E-Store class also needs to be recompiled. When the E-Store class is recompiled, the UI class also needs to be recompiled.

What happens at the end of the promotional sale when the E-Store wants to discontinue the discounts? We need to recompile all the 3 classes one more time. Ideally, since the changes affect only the ShoppingCart behavior, rest of the application modules should not have been affected. But due to the tight coupling, other modules are also affected.

Loosening the Coupling through Componentization
Low coupling design principle suggests that there should not be tight coupling among unstable entities. Having dependency on a relatively stable entity does not bring forth the evils of tight coupling.

In order to make the application modules loosely coupled, we need to componentize the application. A component is a deployable piece of software that would be independently developed and independently maintained. Independence here refers to development and maintenance of a component independent of the other components which collaborate with this component in an application assembly. In a component based application, change to one component should not directly affect the application.

We avoid tight coupling between components by introducing the abstraction of Component Interface. A component interface exposes the signature of the functionalities implemented by component. The Component Interface will be a relatively stable entity as compared to the Component Implementation.

A component consumes interfaces that it depends on for fulfilling the required functionality and provides interfaces for the functionality it provides. For collaboration with the other components, the component would work through the interfaces provided by the other components. Practically, the component should not depend on the implementation of the other components; it should depend only on the interfaces provided by those components. This way, the coupling among components is through the relatively stable interfaces and not through the highly instable implementations. Thus the principle of low coupling is upheld.

In addition to the low coupling achieved, componentization of a monolithic application also brings about substitutability of components. This means a component of the application can be substituted by another component without affecting the overall application. The only requirement is that the replacing component must offer the same set of interfaces as was offered by the component being replaced.

Componentizing the E-Store Application
We need to introduce the Component Interface abstraction in the monolithic design shown in Figure 1. Looking at the dependency details represented in the Table 1, the Product, ShoppingCart, Inventory and Store classes should be represented as components. From the implementation classes of Product, Inventory, ShoppingCart, and Store, we can extract Java Interfaces IProduct, IInventory, IShoppingCart, and IStore respectively using the refactoring tools in the IDE. The extracted interfaces are shown in Figure 2. It must be noted in Figure 9 that the method signatures in IInventory, IShoppingCart, and IStore are changed to refer to IProduct interface in place of the Product class in the corresponding methods in Figure 1.

Figure 2: E-Store Interfaces - Class Diagram

In this E-Store application, there are four components represented by their interfaces - IProduct, IInventory, IShoppingCart and IStore. After the interfaces are extracted from the monolithic implementation, it will be a good design to get these interfaces packaged into a separate Java Package called estore.ifce.

The package can also be compiled to a JAR resulting in a deployable and independently maintainable estore.ifce module. This module does not implement any component, but it simply defines ONLY the interfaces which would be implemented by other components in the application. All the components depend ONLY on this common interface module and they need not depend on individual implementation components.

Following the above principle, if we separate the implementation of Product, Inventory, ShoppingCart, and Store into individual packages and into individual JARs, we get the  package structure shown in Figure 3.

Figure 3: Package Diagram separating interface from implementation

When we refactor the code into multiple components as shown above, two code segments fail to compile as shown in Figure 4 and Figure 5. Kindly look at Listings 2 and 3 for reference.

Figure 4: Compilation error in Inventory class post Componentization

Figure 5: Compilation error in Store class post Componentization

The compilation errors occurred due to the fact that above code tried to invoke the implementation code of other components directly. We have arranged our dependencies such that one component would not depend on the internal implementation of the other component. The above code violates this.

This problem can be solved in various ways. This is where all the component models and frameworks come to the rescue. Component models like RMI, EJB, Spring, OSGi and SCA have their own way of creating object references to components from the interfaces. Users can choose to use one of these frameworks or models for initializing the component. However in this article, we will look at a simple component model developed to solve this problem without using any of the component models and frameworks. This component model uses some of the principles of design pattern and best practices which is explained in detail below.

The problem of direct reference to implementation can be resolved by introducing a ‘Factory' object that can be used by the component to obtain an object of the corresponding type. A generalized Factory object could have a signature as below:

public interface IFactory<T> {
public T createInstance();

}

To avoid tight coupling, the Factory object is really useful. So, instead of coupling to a concrete class which implements IProduct, the Inventory implementation can depend on a Factory object of type IFactory<IProduct>. By invoking the createInstance() method on the factory object, the Inventory class can obtain new IProduct objects. Similarly the IInventory and IShoppingCart objects can be obtained from the respective Factory objects using createInstance() method in the Store class.

IProduct iPad = productFactory.createInstance();
.....
IShoppingCart shoppingCart = shoppingCartFactory.createInstance();
IInventory inventory = inventoryFactory.createInstance();

To obtain a factory object, a FactoryRegistry class is used as a common factory registry for registering and retrieving factory objects using the whiteboard pattern. The common registry object can be implemented as shown in Listing 8.

public class FactoryRegistry {

private static Map<Class<?>, IFactory<?>> factoryMap = new HashMap<Class<?>, IFactory<?>>();

public static void registerFactory(Class<?> ifceClazz, IFactory<?> factory) {
factoryMap.put(ifceClazz, factory);
}

public static IFactory<?> getFactory(Class<?> ifceClazz) {
return factoryMap.get(ifceClazz);
}
}

Listing 8: FactoryRegistry Class

The Inventory class can obtain a reference to a product factory object of type IFactory<IProduct> using the whiteboard pattern. Similarly any factory object can be retrieved from the FactoryRegistry.

IFactory<IProduct> productFactory =
(IFactory<IProduct>) FactoryRegistry.getFactory(IProduct.class);

One important question that remains unanswered is how, where and when these factory objects are registered with the FactoryRegistry. All component implementations only try to GET references. As mentioned earlier, component models like RMI, EJB, OSGi have their own service repository where these references are registered and components using these references look up the repository to get an object of the corresponding type. In this simple model, a registry program named ‘ComponentRunner' is handwritten which will look up for IFactory type interfaces and its implementations and register them appropriately so that getFactory method returns an initialized factory object. Kindly refer to the source code provided for details on ComponentRunner.

Implementation of this model will help in resolving the compilation issue highlighted in Figures 4 and 5. The modified code without any compilation error using the factory pattern and registry lookup is shown in Listings 9 and 10.

private void initStock() {

IFactory<IProduct> productFactory = (IFactory<IProduct>) FactoryRegistry.getFactory(IProduct.class);

IProduct iPad = productFactory.createInstance();
iPad.setName("NewIPad");
iPad.setPrice(400.00);
stock.put(iPad, 50);

IProduct gTab = productFactory.createInstance();
gTab.setName("GalaxyTab2");
gTab.setPrice(300.00);
stock.put(gTab, 75);

IProduct kindle = productFactory.createInstance();
kindle.setName("KindleFire");
kindle.setPrice(250.00);
stock.put(kindle, 30);

}

Listing 9: Modified Inventory Class without compilation error

public class Store implements IStore {

IInventory inventory;
IShoppingCart shoppingCart;

public Store() {
IFactory<IInventory> inventoryFactory = (IFactory<IInventory>) FactoryRegistry.getFactory(IInventory.class);
IFactory<IShoppingCart> shoppingCartFactory = (IFactory<IShoppingCart>) FactoryRegistry.getFactory(IShoppingCart.class);

shoppingCart = shoppingCartFactory.createInstance();
inventory = inventoryFactory.createInstance();
}
......

Listing 10: Modified E-Store Class without compilation error

Apart from the above highlighted modifications, the business logic implementation in the components remains the same as before in the monolithic case.

Executing the Sample Application
The sample application demonstrated in this article is available as a zip file for download. The zip file contains a complete Eclipse Workspace with the source as well as binary files. To run the componentized version of this application, it is required to follow the steps below:

  1. Create a folder named ‘run'.
  2. Export the components - store, product, inventory, shopping cart, component model, store app projects from the eclipse workspace to a Jar file in the ‘run' folder, say ‘eStore.jar' for example. In order to reuse these components in other applications, individual projects can be exported as separate jar files.
  3. Copy the contents of ‘bin' folder from comprunner project to the ‘run' folder. The bin folder contains a sub folder named ‘comprunner' which contains the ComponentRunner class.
  4. Open a command prompt and change the directory to ‘run' folder.
  5. To execute the ComponentRunner, type the following in command prompt

Conclusion
The advantage of a component-oriented approach is well explained with a sample application. In this article, we also saw the limitations of having a monolithic application and how the dependencies bring in tight coupling between components. Low coupling between components can be achieved by the abstraction of Component interface. Interfaces also bring in component substitutability. A component can depend on some interfaces and provide interfaces. Interface is the key mechanism in component design principles. Initialization of component implementations can happen using several mechanisms which are different for different component models and frameworks. In this sample, a home grown component model - a factory based model is used for initializing the components and component references are registered with a simple repository - CompRunner for look up.

More Stories By Piram Manickam

Piram Manickam works at Infosys Limited. He would like to acknowledge and thank Sangeetha S, a beloved colleague and friend, for her invaluable contributions in this work.

More Stories By Subrahmanya SV

Subrahmanya SV works at Infosys Limited. He would like to acknowledge and thank Sangeetha S, a beloved colleague and friend, for her invaluable contributions in this work.

More Stories By S Sangeetha

S Sangeetha is a Senior Technical Architect at the E-Commerce Research Labs at Infosys Limited. She has over 15 years of experience in architecture, design and development of enterprise Java applications. She is also involved in enhancing the technical skills of Architects at Infosys. She has co-authored a book on ‘J2EE Architecture’ and also has written numerous articles on Java for various online Java forums like JavaWorld, java.net, DevX.com and internet.com. She can be reached at [email protected]

Comments (1)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
It’s 2016: buildings are smart, connected and the IoT is fundamentally altering how control and operating systems work and speak to each other. Platforms across the enterprise are networked via inexpensive sensors to collect massive amounts of data for analytics, information management, and insights that can be used to continuously improve operations. In his session at @ThingsExpo, Brian Chemel, Co-Founder and CTO of Digital Lumens, will explore: The benefits sensor-networked systems bring to ...
Identity is in everything and customers are looking to their providers to ensure the security of their identities, transactions and data. With the increased reliance on cloud-based services, service providers must build security and trust into their offerings, adding value to customers and improving the user experience. Making identity, security and privacy easy for customers provides a unique advantage over the competition.
SYS-CON Events announced today that Venafi, the Immune System for the Internet™ and the leading provider of Next Generation Trust Protection, will exhibit at @DevOpsSummit at 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Venafi is the Immune System for the Internet™ that protects the foundation of all cybersecurity – cryptographic keys and digital certificates – so they can’t be misused by bad guys in attacks...
"Tintri was started in 2008 with the express purpose of building a storage appliance that is ideal for virtualized environments. We support a lot of different hypervisor platforms from VMware to OpenStack to Hyper-V," explained Dan Florea, Director of Product Management at Tintri, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Is your aging software platform suffering from technical debt while the market changes and demands new solutions at a faster clip? It’s a bold move, but you might consider walking away from your core platform and starting fresh. ReadyTalk did exactly that. In his General Session at 19th Cloud Expo, Michael Chambliss, Head of Engineering at ReadyTalk, will discuss why and how ReadyTalk diverted from healthy revenue and over a decade of audio conferencing product development to start an innovati...
For basic one-to-one voice or video calling solutions, WebRTC has proven to be a very powerful technology. Although WebRTC’s core functionality is to provide secure, real-time p2p media streaming, leveraging native platform features and server-side components brings up new communication capabilities for web and native mobile applications, allowing for advanced multi-user use cases such as video broadcasting, conferencing, and media recording.
Large scale deployments present unique planning challenges, system commissioning hurdles between IT and OT and demand careful system hand-off orchestration. In his session at @ThingsExpo, Jeff Smith, Senior Director and a founding member of Incenergy, will discuss some of the key tactics to ensure delivery success based on his experience of the last two years deploying Industrial IoT systems across four continents.
There will be new vendors providing applications, middleware, and connected devices to support the thriving IoT ecosystem. This essentially means that electronic device manufacturers will also be in the software business. Many will be new to building embedded software or robust software. This creates an increased importance on software quality, particularly within the Industrial Internet of Things where business-critical applications are becoming dependent on products controlled by software. Qua...
"There's a growing demand from users for things to be faster. When you think about all the transactions or interactions users will have with your product and everything that is between those transactions and interactions - what drives us at Catchpoint Systems is the idea to measure that and to analyze it," explained Leo Vasiliou, Director of Web Performance Engineering at Catchpoint Systems, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York Ci...
SYS-CON Events has announced today that Roger Strukhoff has been named conference chair of Cloud Expo and @ThingsExpo 2016 Silicon Valley. The 19th Cloud Expo and 6th @ThingsExpo will take place on November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. "The Internet of Things brings trillions of dollars of opportunity to developers and enterprise IT, no matter how you measure it," stated Roger Strukhoff. "More importantly, it leverages the power of devices and the Interne...
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and shared the must-have mindsets for removing complexity from the develo...
The IETF draft standard for M2M certificates is a security solution specifically designed for the demanding needs of IoT/M2M applications. In his session at @ThingsExpo, Brian Romansky, VP of Strategic Technology at TrustPoint Innovation, explained how M2M certificates can efficiently enable confidentiality, integrity, and authenticity on highly constrained devices.
SYS-CON Events announced today that MangoApps will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. MangoApps provides modern company intranets and team collaboration software, allowing workers to stay connected and productive from anywhere in the world and from any device.
"We've discovered that after shows 80% if leads that people get, 80% of the conversations end up on the show floor, meaning people forget about it, people forget who they talk to, people forget that there are actual business opportunities to be had here so we try to help out and keep the conversations going," explained Jeff Mesnik, Founder and President of ContentMX, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Internet of @ThingsExpo has announced today that Chris Matthieu has been named tech chair of Internet of @ThingsExpo 2016 Silicon Valley. The 6thInternet of @ThingsExpo will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
When people aren’t talking about VMs and containers, they’re talking about serverless architecture. Serverless is about no maintenance. It means you are not worried about low-level infrastructural and operational details. An event-driven serverless platform is a great use case for IoT. In his session at @ThingsExpo, Animesh Singh, an STSM and Lead for IBM Cloud Platform and Infrastructure, will detail how to build a distributed serverless, polyglot, microservices framework using open source tec...
The 19th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Digital Transformation, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportuni...
From wearable activity trackers to fantasy e-sports, data and technology are transforming the way athletes train for the game and fans engage with their teams. In his session at @ThingsExpo, will present key data findings from leading sports organizations San Francisco 49ers, Orlando Magic NBA team. By utilizing data analytics these sports orgs have recognized new revenue streams, doubled its fan base and streamlined costs at its stadiums. John Paul is the CEO and Founder of VenueNext. Prior ...
A critical component of any IoT project is what to do with all the data being generated. This data needs to be captured, processed, structured, and stored in a way to facilitate different kinds of queries. Traditional data warehouse and analytical systems are mature technologies that can be used to handle certain kinds of queries, but they are not always well suited to many problems, particularly when there is a need for real-time insights.