Click here to close now.

Welcome!

XML Authors: Carmen Gonzalez, Elizabeth White, Ian Goldsmith, XebiaLabs Blog, Pat Romanski

Related Topics: Virtualization, XML, Microservices Journal, AJAX & REA, Cloud Expo, Apache

Virtualization: Blog Feed Post

Bare Metal Blog: FPGAs - The Benefits and Risks

The use of FPGAs, the risks, trade-offs, and benefits to IT

I was talking with the team working on our yard – they’re putting in new sidewalks and a patio, amongst other things – and we got on the subject of gutters. When we bought this house, it came with no gutters, and that has, over time, caused some serious damage to the base of the house. Wood and plaster do not take it well when water pours down on them at the rate that, oh, say melting snow in the spring sends it down. So I had them get us an estimate for gutters on the entire house. Some of the work they’re estimating is running the gutters right to the storm drain, which is not normally cheap, but they had both the front and back yards all ripped up, so it is a good time to do it, both cheaper and less messy, since the mess is already there.

imageSo I told them to do it, because I don’t want the sod they’re going to lay to be ripped up in a year when we decide to put the gutters on, and certainly don’t want them to rip up the patio and sidewalks they’re putting in now just to lay pipe later – that would be nearly impossible.

And that, in a nutshell, is the same reason why FPGAs are used in a lot of high-tech firms. If the device is my yard/sidewalks, and I have to choose between a custom ASIC versus an FPGA, the custom ASIC would require me to rip up the yard later, while the FPGA is planning ahead for change.

Sidewalk with pipes under itLet me explain. With an FPGA, the circuits are programmed. Not like software, but code sets up the circuits, and then they are pretty equivalent to having them be hard-wired. With an ASIC, they really are hard-wired. So six months later, a change to the system – be it added functionality or fixes to existing logic – will be far easier with an FPGA than an ASIC. With an FPGA, the design file is opened, the changes made and tested, then the config is compiled and delivered to manufacturing. At that point, the devices produced with the new config file will have the new functionality. With ASICs, you change the design, send it to a manufacturing shop, wait for the shop to produce a small run (working it into their schedule that is), test the result, and then do a full production run. Then the new ASIC has to be put on the assembly line to replace the old ASIC. The difference is astronomical in terms of time required and even more so in terms of cost.

Of course there are some trade-offs. Every architectural choice results in trade-offs, and anyone who tells you differently is indeed trying to sell you something, and they don’t want to admit the trade-offs used to produce what they’re selling.

One of the big concerns out there about FPGAs is that they’re less secure. In the most vague, general sense, this is true. But in practical use scenarios, it most certainly isn’t. Here are the concerns, and why they’re over-rated (note that these notes are adapted from responses to my questions put to Clint Harames of F5<’s most excellent FPGA team, I cannot vouch for other production except to say the other teams I was involved with outside of F5 were similar):

  • It’s field programmable! What if it gets modified? In F5’s case, none of the programmability is accessible from the outside. There is no Ethernet or coding hack that can reprogram it, because that functionality is not accessible. Other vendors work to a differing standard, so definitely worth checking, though I would remind you that it is almost never going to be as easy to hack an FPGA as it is to hack software or COTS hardware.
  • Okay, but can’t it be erased and destroy the device? In theory yes (though erasing it is only effective until the next boot – non-destructive, so-to-speak), but if “modify” functionality is not accessible, then it can’t be erased easily. The caveat is that there is of course a reset pin on the chip, but if the ne’er-do-well has physical access to your device, time to disassemble the device, and a handy pinout for the FPGA chip you’re using, I’m going to guess you have bigger problems than whether they can reset your FPGA.
  • If it’s programmable, can’t the program be read out and modified? Again, that functionality can be enabled on the chip, and you can check with your device manufacturer to see if they leave it enabled for production devices. Remember, it is a twofold story here, in F5’s case, we don’t generally want to reprogram production devices and don’t want to make reverse engineering our product any easier than it has to be, while we want to protect you from someone modifying a production device. So when the design is done and meets all test criteria, we at F5 turn access to this functionality off completely before shipping product is produced. Definitely worth checking with your vendor to find out what they are doing.

Again, your vendor may do things differently, if, for some reason they need the ability to reprogram the FPGA in your device.

For you, the IT staffer, the benefits are pretty straight-forward. The device you purchase will be closer to “up to date” because of the time-to-market benefits of FPGAs, it will be cheaper because of the reduced up-front costs (note that like everything involving costs, economies of scale can change the “cheaper” part to be untrue, depending upon the costs involved), and the resulting device will be far, far faster than the equivalent processing done on a general purpose CPU. In the end, it is hardware doing the processing, and FPGAs have concurrency that general purpose CPUs can only match with a huge number of cores, even then since the OS handles the scheduling on a general purpose CPU, many cores does not normally make up the performance difference.

There are some who think the advent of virtualization and virtualized appliances should curb the use of FPGAs, as the virtual version has to include all the functionality. While this is, on the surface, a reasonable argument, it has a flaw. FPGAs are MUCH faster than software will ever be, let alone a VM running on a host with who-knows-how-many other VMs sharing its resources. So in cases like F5, where there is a hardware and a software version, the key is to be able to run in both. TMOS, F5’s OS for traffic management, uses hardware if available, software if not. This offers the best of both worlds – acceptable traffic management in a VM, and high-performance traffic management in hardware.

Next time I’ll delve into specific functionality that on our hardware platforms is implemented in FPGA, and how that helps you do your job in IT, today was more of a “what are the risks, what are the benefits” in a generic sense.

Read the original blog entry...

More Stories By Don MacVittie

Don MacVittie is Founder of Ingrained Technology, LLC, specializing in Development, Devops, and Cloud Strategy. Previously, he was a Technical Marketing Manager at F5 Networks. As an industry veteran, MacVittie has extensive programming experience along with project management, IT management, and systems/network administration expertise.

Prior to joining F5, MacVittie was a Senior Technology Editor at Network Computing, where he conducted product research and evaluated storage and server systems, as well as development and outsourcing solutions. He has authored numerous articles on a variety of topics aimed at IT professionals. MacVittie holds a B.S. in Computer Science from Northern Michigan University, and an M.S. in Computer Science from Nova Southeastern University.

@ThingsExpo Stories
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal an...
DevOps tends to focus on the relationship between Dev and Ops, putting an emphasis on the ops and application infrastructure. But that’s changing with microservices architectures. In her session at DevOps Summit, Lori MacVittie, Evangelist for F5 Networks, will focus on how microservices are changing the underlying architectures needed to scale, secure and deliver applications based on highly distributed (micro) services and why that means an expansion into “the network” for DevOps.
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The 3rd International @ThingsExpo, co-located with the 16th International Cloud Expo – to be held June 9-11, 2015, at the Javits Center in New York City, NY – is now accepting Hackathon proposals. Hackathon sponsorship benefits include general brand exposure and increasing engagement with the developer ecosystem. At Cloud Expo 2014 Silicon Valley, IBM held the Bluemix Developer Playground on November 5 and ElasticBox held the DevOps Hackathon on November 6. Both events took place on the expo floor. The Bluemix Developer Playground, for developers of all levels, highlighted the ease of use of...
We’re no longer looking to the future for the IoT wave. It’s no longer a distant dream but a reality that has arrived. It’s now time to make sure the industry is in alignment to meet the IoT growing pains – cooperate and collaborate as well as innovate. In his session at @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, will examine the key ingredients to IoT success and identify solutions to challenges the industry is facing. The deep industry expertise behind this presentation will provide attendees with a leading edge view of rapidly emerging IoT oppor...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
SYS-CON Events announced today that Gridstore™, the leader in hyper-converged infrastructure purpose-built to optimize Microsoft workloads, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Gridstore™ is the leader in hyper-converged infrastructure purpose-built for Microsoft workloads and designed to accelerate applications in virtualized environments. Gridstore’s hyper-converged infrastructure is the industry’s first all flash version of HyperConverged Appliances that include both compute and storag...
For years, we’ve relied too heavily on individual network functions or simplistic cloud controllers. However, they are no longer enough for today’s modern cloud data center. Businesses need a comprehensive platform architecture in order to deliver a complete networking suite for IoT environment based on OpenStack. In his session at @ThingsExpo, Dhiraj Sehgal from PLUMgrid will discuss what a holistic networking solution should really entail, and how to build a complete platform that is scalable, secure, agile and automated.
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...
Hadoop as a Service (as offered by handful of niche vendors now) is a cloud computing solution that makes medium and large-scale data processing accessible, easy, fast and inexpensive. In his session at Big Data Expo, Kumar Ramamurthy, Vice President and Chief Technologist, EIM & Big Data, at Virtusa, will discuss how this is achieved by eliminating the operational challenges of running Hadoop, so one can focus on business growth. The fragmented Hadoop distribution world and various PaaS solutions that provide a Hadoop flavor either make choices for customers very flexible in the name of opti...
In the consumer IoT, everything is new, and the IT world of bits and bytes holds sway. But industrial and commercial realms encompass operational technology (OT) that has been around for 25 or 50 years. This grittier, pre-IP, more hands-on world has much to gain from Industrial IoT (IIoT) applications and principles. But adding sensors and wireless connectivity won’t work in environments that demand unwavering reliability and performance. In his session at @ThingsExpo, Ron Sege, CEO of Echelon, will discuss how as enterprise IT embraces other IoT-related technology trends, enterprises with i...
Wearable devices have come of age. The primary applications of wearables so far have been "the Quantified Self" or the tracking of one's fitness and health status. We propose the evolution of wearables into social and emotional communication devices. Our BE(tm) sensor uses light to visualize the skin conductance response. Our sensors are very inexpensive and can be massively distributed to audiences or groups of any size, in order to gauge reactions to performances, video, or any kind of presentation. In her session at @ThingsExpo, Jocelyn Scheirer, CEO & Founder of Bionolux, will discuss ho...
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
Every day we read jaw-dropping stats on the explosion of data. We allocate significant resources to harness and better understand it. We build businesses around it. But we’ve only just begun. For big payoffs in Big Data, CIOs are turning to cognitive computing. Cognitive computing’s ability to securely extract insights, understand natural language, and get smarter each time it’s used is the next, logical step for Big Data.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
The 4th International Internet of @ThingsExpo, co-located with the 17th International Cloud Expo - to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA - announces that its Call for Papers is open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
17th Cloud Expo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterprises are using some form of XaaS – software, platform, and infrastructure as a service.
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...