Welcome!

XML Authors: Carmen Gonzalez, Ignacio M. Llorente, David Dossot, Yeshim Deniz, Elizabeth White

Blog Feed Post

How to Harden Your APIs by Andy Thurai

The market for APIs has experienced explosive growth in recent years, yet one of the major issues that providers still face is the protection and hardening of the APIs that they expose to users. In particular, when you are exposing APIs from a cloud based platform, this becomes very difficult to achieve given the various cloud provider constraints. In order to achieve this you would need a solution that can provide the hardening capabilities out of the box, but that still permits for customization of the granular settings to meet the solution need. Intel has such a solution and it has been well thought out. If this is something you desire this article might help you foresee the many uses and versatility.

Identify sensitive data and sensitivity of your API

The first step in protecting sensitive data is identifying it as such. This could be anything like PII, PHI and PCI data. Perform a complete analysis of your inbound and outbound data to your API, including all parameters, to figure this out.

Once identified, make sure only authorized people can access the data.

This will require solid identity, authentication, and authorization systems to be in place. These all can be provided by the same system. Your API should be able to identify multiple types of identities. In order to achieve an effective identity strategy, your system will need to accept identities of the older formats such as X.509, SAML, WS-Security as well as the newer breed of OAuth, Open ID, etc. In addition your identity systems must  mediate the identities, as an Identity Broker, so it can securely and efficiently relate these credentials to your API to consume.

You will need to have identity-based governance policies in place. These policies need to be enforced globally not just locally. Effectively this means you need to have predictable results that are reproducible regardless of where you deploy your policies. Once the user is identified and authenticated, then you can use that result to authorize the user based on not only that credential, but also based on the location where the invocation came from, time of the day, day of the week, etc. Furthermore, for highly sensitive systems the data or user can be classified as well. Top secret data can be accessed only by top classified credentials, etc. In order to build very effective policies and govern them at run time, you need to integrate with a mature policy decision engine. It can be either standard based, such as XACML, or integrated with an existing legacy system provider

Protect Data

Protect your data as if your business depends on it, as it often does, or should. Make sure that the sensitive data, whether in transit or at rest (storage), is not in an unprotected original format. While there are multiple ways the data can be protected, the most common ones are encryption or tokenization. In the case of encryption, the data will be encrypted, so only authorized systems can decrypt the data back to its original form. This will allow the data to circulate encrypted and decrypt as necessary along the way by secured steps. While this is a good solution for many companies you need be careful about the encryption standard you choose, your key management and key rotation policies. The other standard “tokenization” is based on the fact you can’t steal what is not there. You can basically tokenize anything from PCI, PII or PHI information. The original data is stored in a secure vault and a token (or pointer, representing the data) will be sent in transit down stream. The advantage is that if any unauthorized party gets hold of the token, they wouldn’t know where to go to get the original data, let alone have access to the original data. Even if they do know where the token data is located, they are not white listed, so the original data is not available to them. The greatest advantage with tokenization systems is that it reduces the exposure scope throughout your enterprise, as you have eliminated vulnerabilities throughout the system by eliminating the sensitive and critical data from the stream thereby centralizing your focus and security upon the stationary token vault rather than active, dynamic and pliable data streams.. While you’re at it, you might want to consider a mechanism, such as DLP, which is highly effective in monitoring for sensitive data leakage. This process can automatically tokenize or encrypt the sensitive data that is going out. You might also want to consider policy based information traffic control. While certain groups of people may be allowed to communicate certain information (such as company financials by an auditor,etc) the groups may not be allowed to send that information. You can also enforce that by a location based invocation (ie. intranet users vs. mobile users who are allowed to get certain information).

QOS

While APIs exposed in the cloud can let you get away with scalability from a expansion or a burst during peak hours, it is still a good architectural design principle to make sure that you limit or rate access to your API. This is especially valuable  if you are offering an open API and exposure to anyone, which is an important and valuable factor. There are 2 sides to this; a business side and a technical side. The technical side will allow your APIs to be consumed in a controlled way and the business side will let you negotiate better SLA contracts based on usage model you have handy. You also need to have a flexible throttling mechanism that can help you implement this more efficiently such as just notify, throttle the excessive traffic, shape the traffic by holding the messages until the next sampling period starts, etc. In addition, there should be a mechanism to monitor and manage traffic both for long term and for short term which can be based on 2 different policies.

Protect your API

The attacks or misuse of  your publicly exposed API can be intentional or accidental. Either way you can’t afford for anyone to bring your API down. You need to have application aware firewalls that can look into the application level messages and prevent attacks. Generally the application attacks tend to fall under Injection attacks (SQL Injection, Xpath injection, etc), Script attacks, or attack on the Infrastructure itself.

Message Security

You also need to provide both transport level and message level security features. While transport security features such as SSL, TSL provide some data privacy you need to have an option to encrypt/ sign message traffic, so it will reach the end systems safely and securely and can authenticate the end user who sent the message.

Imagine if you can provide all of the above in one package. Just take it out of the packaging, power it up, and with a few configuration steps provide most of what we have discussed above?  More importantly in a matter of hours you’ve hardened your API to your enterprise level (or in some cases better than that). Intel has such a solution to offer.

Check out our Intel API gateway solution which offers all of those hardening features, in one package and a whole lot more. Feel free to reach out to me if you have any questions or need additional info.

http://cloudsecurity.intel.com/solutions/cloud-service-brokerage-api-resource-center

 

 

Andy Thurai — Chief Architect & CTO, Application Security and Identity Products, Intel

Andy Thurai is Chief Architect and CTO of Application Security and Identity Products with Intel, where he is responsible for architecting SOA, Cloud, Governance, Security, and Identity solutions for their major corporate customers. In his role, he is responsible for helping Intel/McAfee field sales, technical teams and customer executives. Prior to this role, he has held technology architecture leadership and executive positions with L-1 Identity Solutions, IBM (Datapower), BMC, CSC, and Nortel. His interests and expertise include Cloud, SOA, identity management, security, governance, and SaaS. He holds a degree in Electrical and Electronics engineering and has over 20+ years of IT experience.

He blogs regularly at www.thurai.net/securityblog on Security, SOA, Identity, Governance and Cloud topics. You can find him on LinkedIn

Read the original blog entry...

More Stories By Application Security

This blog references our expert posts on application and web services security.

@ThingsExpo Stories
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.