Click here to close now.

Welcome!

XML Authors: Clinton Wolfe, Carmen Gonzalez, Elizabeth White, Brad Thies, Ian Khan

Related Topics: SOA & WOA, XML

SOA & WOA: Article

$3 Trillion Problem: Three Best Practices for Today's Dirty Data Pandemic

Maybe your software is healthy, but is your data terminally ill?

In survey after survey, about half of IT executives consistently agree that data quality and data consistency is one of the biggest roadblocks to them getting full value from their data.

This has been consistently true all since the Chinese invented the abacus. I suspect it will be true long after quantum computing has solved every other problem that humanity faces.

 

Incorrect, inconsistent, fraudulent and redundant data cost the U.S. economy over $3 Trillion a year - an astounding figure that is over twice the amount of the 2011 Federal Deficit.

Similarly, many experts estimate that HALF the money spent on developers goes towards "software repair". So we're living in a world of sick software and dirty data. And the cost of all this is staggering.

 

I've long been a proponent of healthy software - but healthy software can only function properly in the presence of healthy data. Does quality software even matter if the underlying data are defective? Agreed - that's pushing the point to the extreme.

The rapid, iterative, continuous testing model has measurably improved the quality of software development. Evangelists such as Kent Beck have had a huge impact on this. I recently posted a freely downloadable white paper on this topic. But where are the evangelists for data quality? Where is an open source "JUnit for Data" and if it's out there, why isn't everyone using it?

The Cost of Bad Data
Anyone care to make a guess at how much money is wasted every year due to dirty or duplicate / redundant data? I'll start by presenting one common user story - one you probably have also recently experienced. And then expand on it.

Recently, I went to my mailbox and waiting for me was yet another invitation from a major bank to join their credit card program.

This shouldn't come as a surprise, as people everywhere are deluged by credit card offers. Except that I already have the particular card in question. Not only that, but because the particular bank in question has managed to acquire a number of other banks and credit card lines of business, between my personal and my corporation, I believe I now have five Visa cards from this particular bank.

I also occasionally get mail from them offering me cash bonuses to open up a checking account at their bank. Probably wasted postage, as I already have two checking accounts there. I suppose I could open up a third, just to get the $100.

Every month, I get a significant number of expensive looking direct mail offers from this bank, often with slightly different variations on my name, which I promptly throw away. Aside from the impact on the environment and the wasted direct mail expense, it's a bit irritating to me. I hate junk mail, and I feel compelled to shred things like credit card offers. So they've burdened me (an existing customer) with yet another "thing to do". So they've spent money, hurt the environment, irritated an existing customer, and now I get to make fun of them online. Bad investment on their part.

QAS (an Experian company) estimates that the average company wastes $180,000 per year simply on direct mail that does not reach the intended recipient because of inaccurate data. But this is just one miniscule slice of the data quality issue. In fact it's only one small part of the "direct mail" data quality issue. A lot more money is wasted in "inappropriate offers" and "duplicate offers" such as the ones my bank sends. I also get offers from several companies that are convinced that I'm married to the previous owner of my house. Those offers reach me, yet are immediately shredded. No sense opening them. So the "big picture" just for direct mail is much larger than what QAS shows.

None of this accounts for the "irritation" factor - what is the cost of annoying existing customers (or potential customers) with badly targeted offers?

Yet direct mail and all other forms of advertising together add up to a tiny slice of the bad-data pie.

Fraud Is a Bad Data Problem
Some time back, the US Attorney General's office stated that they believed that 14 percent of health care dollars are wasted in fraud or inaccurate billing.

Why do I lump fraud in with "bad data"? Bad data comes in two forms - accidentally created bad data and intentionally created bad data (for example, fraudulent billing). Either way, it's bad data. It doesn't matter how it got there, it's defective. And a lot of it could be detected and remediated "at the point of entry".

Healthcare accounts for over 16% of the U.S. GDP (Canada is 10%, Australia is 9% as a comparison). The U.S. GDP is currently approximately $14 Trillion - therefore healthcare spending in the U.S. amounts to $2.25 trillion. And the cost of bad data in Healthcare- $314 Billion.

That's just for fraud or inaccurate billing. What about other areas in healthcare (e.g. lost data, "bad patient outcomes", duplicate patient testing, manual rework, etc.)?  Even if we round down, we're still taking about $500 Billion for one industry alone.  If I extrapolate that out to the entire U.S. economy, we're talking about a $3.1 Trillion problem.  No matter how far off my estimate is (on the high side or the low side), it's a problem of astonishing proportions.

Cost of Bad Data to Business and IT
A classic but very worthwhile book from information governance expert Larry English posits that the business cost of nonquality data may be as high as 10-25% of an organization's revenue, and that as much as 50% of the typical IT budget may be spent in "information scrap and rework".  If that is the case, then my $3.1 estimate is not out of line.

In the introduction to his book, English states "With this proliferation of information, the challenge of managing data and providing quality information has never been more important or complex."

That was in 1999. With so much more data today, and a surprising lack of attention to the data quality issue, I can only imagine the total economic impact of things today. I do not doubt that the cost of bad data has risen.

Dealing with bad data at the I.T. level is expensive. But if I.T. doesn't deal with the bad data problem, then the cost gets pushed downstream to the "business", where the business costs are geometrically higher. The model is not that different from that of "healthy software", where it costs $1 to uncover a defect during developer/unit testing, but $100 to fix that defect if the software is released to the end-users.

"Low Hanging Fruit" - Best Practices for Bad Data Avoidance
I am not saying that there are any easy fixes to the bad data problem. Even something as relatively simple as cleaning, standardizing and de-duping a mailing list with 10,000,000 entries is essentially impossible to get completely right no matter how much effort is put into it. Yet there are some relatively easy things that can be done to substantially improve the quality of our data.  As with so many other problems in life, the some version of the 80/20 rule applies to this as well.

Best Practice #1: When integrating data, fix the quality problem during integration
As data are added or integrated, data should be tested. Profiling is a simple, fast, relatively easily implemented and highly effective way for eliminating significant volumes of defective data.

When developers write a new application for the input of some new data, it's normal for input fields to be "validated" - a simple "hard coded" form of profiling. Month number needs to be between 1-12. 13 is never correct.  Not rocket science. And it's universally done.

Yet people have far fewer reservations about integrating data from here, there and everywhere - often not checking for even the most egregious data errors, and thereby polluting the organizational drinking water (i.e. all the data and applications downstream).

I strongly suspect that's why I get so many offers from my current mega-bank. Since the banking implosion, this particular bank has purchased every other bank around. And their credit card businesses. And their marketing databases. And (apparently) smashed them together. So I get offers for Hollis Tibbetts, Hollis W. Tibbetts, Hollis Winslow Tibbetts, Hollis Tibbets, Hollis Tibbitts and so on.

Integration of data isn't necessarily just a "big bang" event - like when one company acquires another and smashes all the data together, or when two divisional customer applications get merged. It can be more insidious and more when you have "trickle" integration - the slow feed of new data from one system into another (either within the organization or from customers/suppliers/partners).  This is the class of integration that is causing a lot of the problems previously discussed with healthcare fraud.

Either way, FIX IT before integrating it. Once the poison enters the corporate drinking water, it's a lot harder to get out (not just technically, but especially politically/organizationally).

Best Practice #2: When migrating data, fix the data problem as PART of the migration project
Spending $1 billion to upgrade your Seibel system like the US Government is doing? Sounds like a great time to fix your data quality problem.

If you're doing something like migrating your customer data from Seibel to Netsuite or Salesforce.com, data quality should be a major element in your project plan (and budget). Fixing the problems during the migration are easier than fixing them later:

  1. You probably already possess a lot of knowledge about the existing legacy systems, the types of problems in the data. But your new system is relatively unknown to you. So it's likely to be easier to fix data issues from a technical perspective BEFORE they get loaded into the new system.
  2. As part of the data migration process, you can export the data to a staging platform (On Prem or Cloud), leverage any number of data quality tools/engines, and then import the data into the the application platform.  This approach may partially pay for itself in an easier/smoother upgrade to the new application, but that's a rounding error in the overall scheme of things.
  3. Organizationally and politically, companies are much more likely to spend money to clean data if it's part of a project like "upgrade the CRM system". I'd hate to be the CIO that spends a mountain of money to upgrade the CRM system and then goes back to the board asking for another mountain of money to fix all the bad data that just got loaded into the CRM system. That's how CIO's become ex-CIOs.

Best Practice #3: Data profiling and data de-duplication engines
Data profiling engines are a great technology for quickly improving the quality of data as it is integrated from one system into another. At the highest level, they are an engine that scans data, and applies certain easily definable rules to data elements, such as formats, ranges, allowable values and can evaluate relationships between different fields.

Furthermore, these engines can also be used to analyze existing data stores very rapidly and generate "exceptions files" for manual, or semi-automated remediation (if anyone can find a totally automated data remediation system, I'd love to know about it). So they can be used in "continuous testing" or "batch testing" mode.  In batch mode, they're ideal for application migrations or big-bang integrations, as they're easiest to use them if you have your data in something like a staging database.  But they can also be used to test data as it is "trickle integrated" into production systems.

De-duping engines generally fit into the same category. I haven't seen them be as effective as data profiling engines, yet I believe they're essential. The technology for de-duping is considerably more sophisticated - with a large number of different algorithms and tunable thresholds and such. It's a harder class of technology to implement. More manual effort is involved. And, unlike profiling (where there is NEVER a month "13"), de-duping can "get it wrong", so the technology needs to be applied more selectively.

Conclusion
I've never understood why these engines haven't been more popular. There is no "JUnit for data" as far as I know. But commercial solutions are available - they're not terribly expensive and rapidly pay for themselves.

On the other hand, I've never understood why organizations are so tolerant of bad, dirty data. They waste millions and millions directly because of it (and untold quantities of money in "wasted opportunities"), but are reluctant to spend $15,000 on a data quality engine to help fix a significant portion of the problem.

More Stories By Hollis Tibbetts

Hollis Tibbetts, or @SoftwareHollis as his 50,000+ followers know him on Twitter, is listed on various “top 100 expert lists” for a variety of topics – ranging from Cloud to Technology Marketing, Hollis is by day Evangelist & Software Technology Director at Dell Software. By night and weekends he is a commentator, speaker and all-round communicator about Software, Data and Cloud in their myriad aspects. You can also reach Hollis on LinkedIn – linkedin.com/in/SoftwareHollis. His latest online venture is OnlineBackupNews - a free reference site to help organizations protect their data, applications and systems from threats. Every year IT Downtime Costs $26.5 Billion In Lost Revenue. Even with such high costs, 56% of enterprises in North America and 30% in Europe don’t have a good disaster recovery plan. Online Backup News aims to make sure you all have the news and tips needed to keep your IT Costs down and your information safe by providing best practices, technology insights, strategies, real-world examples and various tips and techniques from a variety of industry experts.

Hollis is a regularly featured blogger at ebizQ, a venue focused on enterprise technologies, with over 100,000 subscribers. He is also an author on Social Media Today "The World's Best Thinkers on Social Media", and maintains a blog focused on protecting data: Online Backup News.
He tweets actively as @SoftwareHollis

Additional information is available at HollisTibbetts.com

All opinions expressed in the author's articles are his own personal opinions vs. those of his employer.

@ThingsExpo Stories
The cloud is now a fact of life but generating recurring revenues that are driven by solutions and services on a consumption model have been hard to implement, until now. In their session at 16th Cloud Expo, Ermanno Bonifazi, CEO & Founder of Solgenia, and Ian Khan, Global Strategic Positioning & Brand Manager at Solgenia, will discuss how a top European telco has leveraged the innovative recurring revenue generating capability of the consumption cloud to enable a unique cloud monetization model to drive results.
As organizations shift toward IT-as-a-service models, the need for managing and protecting data residing across physical, virtual, and now cloud environments grows with it. CommVault can ensure protection &E-Discovery of your data – whether in a private cloud, a Service Provider delivered public cloud, or a hybrid cloud environment – across the heterogeneous enterprise. In his session at 16th Cloud Expo, Randy De Meno, Chief Technologist - Windows Products and Microsoft Partnerships, will discuss how to cut costs, scale easily, and unleash insight with CommVault Simpana software, the only si...
Analytics is the foundation of smart data and now, with the ability to run Hadoop directly on smart storage systems like Cloudian HyperStore, enterprises will gain huge business advantages in terms of scalability, efficiency and cost savings as they move closer to realizing the potential of the Internet of Things. In his session at 16th Cloud Expo, Paul Turner, technology evangelist and CMO at Cloudian, Inc., will discuss the revolutionary notion that the storage world is transitioning from mere Big Data to smart data. He will argue that today’s hybrid cloud storage solutions, with commodity...
Cloud data governance was previously an avoided function when cloud deployments were relatively small. With the rapid adoption in public cloud – both rogue and sanctioned, it’s not uncommon to find regulated data dumped into public cloud and unprotected. This is why enterprises and cloud providers alike need to embrace a cloud data governance function and map policies, processes and technology controls accordingly. In her session at 15th Cloud Expo, Evelyn de Souza, Data Privacy and Compliance Strategy Leader at Cisco Systems, will focus on how to set up a cloud data governance program and s...
Roberto Medrano, Executive Vice President at SOA Software, had reached 30,000 page views on his home page - http://RobertoMedrano.SYS-CON.com/ - on the SYS-CON family of online magazines, which includes Cloud Computing Journal, Internet of Things Journal, Big Data Journal, and SOA World Magazine. He is a recognized executive in the information technology fields of SOA, internet security, governance, and compliance. He has extensive experience with both start-ups and large companies, having been involved at the beginning of four IT industries: EDA, Open Systems, Computer Security and now SOA.
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
Every innovation or invention was originally a daydream. You like to imagine a “what-if” scenario. And with all the attention being paid to the so-called Internet of Things (IoT) you don’t have to stretch the imagination too much to see how this may impact commercial and homeowners insurance. We’re beyond the point of accepting this as a leap of faith. The groundwork is laid. Now it’s just a matter of time. We can thank the inventors of smart thermostats for developing a practical business application that everyone can relate to. Gone are the salad days of smart home apps, the early chalkb...
Operational Hadoop and the Lambda Architecture for Streaming Data Apache Hadoop is emerging as a distributed platform for handling large and fast incoming streams of data. Predictive maintenance, supply chain optimization, and Internet-of-Things analysis are examples where Hadoop provides the scalable storage, processing, and analytics platform to gain meaningful insights from granular data that is typically only valuable from a large-scale, aggregate view. One architecture useful for capturing and analyzing streaming data is the Lambda Architecture, representing a model of how to analyze rea...
Today’s enterprise is being driven by disruptive competitive and human capital requirements to provide enterprise application access through not only desktops, but also mobile devices. To retrofit existing programs across all these devices using traditional programming methods is very costly and time consuming – often prohibitively so. In his session at @ThingsExpo, Jesse Shiah, CEO, President, and Co-Founder of AgilePoint Inc., discussed how you can create applications that run on all mobile devices as well as laptops and desktops using a visual drag-and-drop application – and eForms-buildi...
SYS-CON Events announced today that Vitria Technology, Inc. will exhibit at SYS-CON’s @ThingsExpo, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Vitria will showcase the company’s new IoT Analytics Platform through live demonstrations at booth #330. Vitria’s IoT Analytics Platform, fully integrated and powered by an operational intelligence engine, enables customers to rapidly build and operationalize advanced analytics to deliver timely business outcomes for use cases across the industrial, enterprise, and consumer segments.
Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities. Accordingly, attendees at the upcoming 16th Cloud Expo at the Javits Center in New York June 9-11 will find fresh new content in a new track called PaaS | Containers & Microservices Containers are not being considered for the first time by the cloud community, but a current era of re-consideration has pushed them to the top of the cloud agenda. With the launch of Docker's initial release in March of 2013, interest was revved up several notches. Then late last...
SYS-CON Events announced today that Dyn, the worldwide leader in Internet Performance, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Dyn is a cloud-based Internet Performance company. Dyn helps companies monitor, control, and optimize online infrastructure for an exceptional end-user experience. Through a world-class network and unrivaled, objective intelligence into Internet conditions, Dyn ensures traffic gets delivered faster, safer, and more reliably than ever.
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial Cloud.
Performance is the intersection of power, agility, control, and choice. If you value performance, and more specifically consistent performance, you need to look beyond simple virtualized compute. Many factors need to be considered to create a truly performant environment. In his General Session at 15th Cloud Expo, Harold Hannon, Sr. Software Architect at SoftLayer, discussed how to take advantage of a multitude of compute options and platform features to make cloud the cornerstone of your online presence.
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...
Even as cloud and managed services grow increasingly central to business strategy and performance, challenges remain. The biggest sticking point for companies seeking to capitalize on the cloud is data security. Keeping data safe is an issue in any computing environment, and it has been a focus since the earliest days of the cloud revolution. Understandably so: a lot can go wrong when you allow valuable information to live outside the firewall. Recent revelations about government snooping, along with a steady stream of well-publicized data breaches, only add to the uncertainty
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...
PubNub on Monday has announced that it is partnering with IBM to bring its sophisticated real-time data streaming and messaging capabilities to Bluemix, IBM’s cloud development platform. “Today’s app and connected devices require an always-on connection, but building a secure, scalable solution from the ground up is time consuming, resource intensive, and error-prone,” said Todd Greene, CEO of PubNub. “PubNub enables web, mobile and IoT developers building apps on IBM Bluemix to quickly add scalable realtime functionality with minimal effort and cost.”
Docker is an excellent platform for organizations interested in running microservices. It offers portability and consistency between development and production environments, quick provisioning times, and a simple way to isolate services. In his session at DevOps Summit at 16th Cloud Expo, Shannon Williams, co-founder of Rancher Labs, will walk through these and other benefits of using Docker to run microservices, and provide an overview of RancherOS, a minimalist distribution of Linux designed expressly to run Docker. He will also discuss Rancher, an orchestration and service discovery platf...