Welcome!

Industrial IoT Authors: Liz McMillan, Carmen Gonzalez, Pat Romanski, Elizabeth White, Eric Robertson

Related Topics: Microservices Expo, Industrial IoT

Microservices Expo: Article

$3 Trillion Problem: Three Best Practices for Today's Dirty Data Pandemic

Maybe your software is healthy, but is your data terminally ill?

In survey after survey, about half of IT executives consistently agree that data quality and data consistency is one of the biggest roadblocks to them getting full value from their data.

This has been consistently true all since the Chinese invented the abacus. I suspect it will be true long after quantum computing has solved every other problem that humanity faces.

 

Incorrect, inconsistent, fraudulent and redundant data cost the U.S. economy over $3 Trillion a year - an astounding figure that is over twice the amount of the 2011 Federal Deficit.

Similarly, many experts estimate that HALF the money spent on developers goes towards "software repair". So we're living in a world of sick software and dirty data. And the cost of all this is staggering.

 

I've long been a proponent of healthy software - but healthy software can only function properly in the presence of healthy data. Does quality software even matter if the underlying data are defective? Agreed - that's pushing the point to the extreme.

The rapid, iterative, continuous testing model has measurably improved the quality of software development. Evangelists such as Kent Beck have had a huge impact on this. I recently posted a freely downloadable white paper on this topic. But where are the evangelists for data quality? Where is an open source "JUnit for Data" and if it's out there, why isn't everyone using it?

The Cost of Bad Data
Anyone care to make a guess at how much money is wasted every year due to dirty or duplicate / redundant data? I'll start by presenting one common user story - one you probably have also recently experienced. And then expand on it.

Recently, I went to my mailbox and waiting for me was yet another invitation from a major bank to join their credit card program.

This shouldn't come as a surprise, as people everywhere are deluged by credit card offers. Except that I already have the particular card in question. Not only that, but because the particular bank in question has managed to acquire a number of other banks and credit card lines of business, between my personal and my corporation, I believe I now have five Visa cards from this particular bank.

I also occasionally get mail from them offering me cash bonuses to open up a checking account at their bank. Probably wasted postage, as I already have two checking accounts there. I suppose I could open up a third, just to get the $100.

Every month, I get a significant number of expensive looking direct mail offers from this bank, often with slightly different variations on my name, which I promptly throw away. Aside from the impact on the environment and the wasted direct mail expense, it's a bit irritating to me. I hate junk mail, and I feel compelled to shred things like credit card offers. So they've burdened me (an existing customer) with yet another "thing to do". So they've spent money, hurt the environment, irritated an existing customer, and now I get to make fun of them online. Bad investment on their part.

QAS (an Experian company) estimates that the average company wastes $180,000 per year simply on direct mail that does not reach the intended recipient because of inaccurate data. But this is just one miniscule slice of the data quality issue. In fact it's only one small part of the "direct mail" data quality issue. A lot more money is wasted in "inappropriate offers" and "duplicate offers" such as the ones my bank sends. I also get offers from several companies that are convinced that I'm married to the previous owner of my house. Those offers reach me, yet are immediately shredded. No sense opening them. So the "big picture" just for direct mail is much larger than what QAS shows.

None of this accounts for the "irritation" factor - what is the cost of annoying existing customers (or potential customers) with badly targeted offers?

Yet direct mail and all other forms of advertising together add up to a tiny slice of the bad-data pie.

Fraud Is a Bad Data Problem
Some time back, the US Attorney General's office stated that they believed that 14 percent of health care dollars are wasted in fraud or inaccurate billing.

Why do I lump fraud in with "bad data"? Bad data comes in two forms - accidentally created bad data and intentionally created bad data (for example, fraudulent billing). Either way, it's bad data. It doesn't matter how it got there, it's defective. And a lot of it could be detected and remediated "at the point of entry".

Healthcare accounts for over 16% of the U.S. GDP (Canada is 10%, Australia is 9% as a comparison). The U.S. GDP is currently approximately $14 Trillion - therefore healthcare spending in the U.S. amounts to $2.25 trillion. And the cost of bad data in Healthcare- $314 Billion.

That's just for fraud or inaccurate billing. What about other areas in healthcare (e.g. lost data, "bad patient outcomes", duplicate patient testing, manual rework, etc.)?  Even if we round down, we're still taking about $500 Billion for one industry alone.  If I extrapolate that out to the entire U.S. economy, we're talking about a $3.1 Trillion problem.  No matter how far off my estimate is (on the high side or the low side), it's a problem of astonishing proportions.

Cost of Bad Data to Business and IT
A classic but very worthwhile book from information governance expert Larry English posits that the business cost of nonquality data may be as high as 10-25% of an organization's revenue, and that as much as 50% of the typical IT budget may be spent in "information scrap and rework".  If that is the case, then my $3.1 estimate is not out of line.

In the introduction to his book, English states "With this proliferation of information, the challenge of managing data and providing quality information has never been more important or complex."

That was in 1999. With so much more data today, and a surprising lack of attention to the data quality issue, I can only imagine the total economic impact of things today. I do not doubt that the cost of bad data has risen.

Dealing with bad data at the I.T. level is expensive. But if I.T. doesn't deal with the bad data problem, then the cost gets pushed downstream to the "business", where the business costs are geometrically higher. The model is not that different from that of "healthy software", where it costs $1 to uncover a defect during developer/unit testing, but $100 to fix that defect if the software is released to the end-users.

"Low Hanging Fruit" - Best Practices for Bad Data Avoidance
I am not saying that there are any easy fixes to the bad data problem. Even something as relatively simple as cleaning, standardizing and de-duping a mailing list with 10,000,000 entries is essentially impossible to get completely right no matter how much effort is put into it. Yet there are some relatively easy things that can be done to substantially improve the quality of our data.  As with so many other problems in life, the some version of the 80/20 rule applies to this as well.

Best Practice #1: When integrating data, fix the quality problem during integration
As data are added or integrated, data should be tested. Profiling is a simple, fast, relatively easily implemented and highly effective way for eliminating significant volumes of defective data.

When developers write a new application for the input of some new data, it's normal for input fields to be "validated" - a simple "hard coded" form of profiling. Month number needs to be between 1-12. 13 is never correct.  Not rocket science. And it's universally done.

Yet people have far fewer reservations about integrating data from here, there and everywhere - often not checking for even the most egregious data errors, and thereby polluting the organizational drinking water (i.e. all the data and applications downstream).

I strongly suspect that's why I get so many offers from my current mega-bank. Since the banking implosion, this particular bank has purchased every other bank around. And their credit card businesses. And their marketing databases. And (apparently) smashed them together. So I get offers for Hollis Tibbetts, Hollis W. Tibbetts, Hollis Winslow Tibbetts, Hollis Tibbets, Hollis Tibbitts and so on.

Integration of data isn't necessarily just a "big bang" event - like when one company acquires another and smashes all the data together, or when two divisional customer applications get merged. It can be more insidious and more when you have "trickle" integration - the slow feed of new data from one system into another (either within the organization or from customers/suppliers/partners).  This is the class of integration that is causing a lot of the problems previously discussed with healthcare fraud.

Either way, FIX IT before integrating it. Once the poison enters the corporate drinking water, it's a lot harder to get out (not just technically, but especially politically/organizationally).

Best Practice #2: When migrating data, fix the data problem as PART of the migration project
Spending $1 billion to upgrade your Seibel system like the US Government is doing? Sounds like a great time to fix your data quality problem.

If you're doing something like migrating your customer data from Seibel to Netsuite or Salesforce.com, data quality should be a major element in your project plan (and budget). Fixing the problems during the migration are easier than fixing them later:

  1. You probably already possess a lot of knowledge about the existing legacy systems, the types of problems in the data. But your new system is relatively unknown to you. So it's likely to be easier to fix data issues from a technical perspective BEFORE they get loaded into the new system.
  2. As part of the data migration process, you can export the data to a staging platform (On Prem or Cloud), leverage any number of data quality tools/engines, and then import the data into the the application platform.  This approach may partially pay for itself in an easier/smoother upgrade to the new application, but that's a rounding error in the overall scheme of things.
  3. Organizationally and politically, companies are much more likely to spend money to clean data if it's part of a project like "upgrade the CRM system". I'd hate to be the CIO that spends a mountain of money to upgrade the CRM system and then goes back to the board asking for another mountain of money to fix all the bad data that just got loaded into the CRM system. That's how CIO's become ex-CIOs.

Best Practice #3: Data profiling and data de-duplication engines
Data profiling engines are a great technology for quickly improving the quality of data as it is integrated from one system into another. At the highest level, they are an engine that scans data, and applies certain easily definable rules to data elements, such as formats, ranges, allowable values and can evaluate relationships between different fields.

Furthermore, these engines can also be used to analyze existing data stores very rapidly and generate "exceptions files" for manual, or semi-automated remediation (if anyone can find a totally automated data remediation system, I'd love to know about it). So they can be used in "continuous testing" or "batch testing" mode.  In batch mode, they're ideal for application migrations or big-bang integrations, as they're easiest to use them if you have your data in something like a staging database.  But they can also be used to test data as it is "trickle integrated" into production systems.

De-duping engines generally fit into the same category. I haven't seen them be as effective as data profiling engines, yet I believe they're essential. The technology for de-duping is considerably more sophisticated - with a large number of different algorithms and tunable thresholds and such. It's a harder class of technology to implement. More manual effort is involved. And, unlike profiling (where there is NEVER a month "13"), de-duping can "get it wrong", so the technology needs to be applied more selectively.

Conclusion
I've never understood why these engines haven't been more popular. There is no "JUnit for data" as far as I know. But commercial solutions are available - they're not terribly expensive and rapidly pay for themselves.

On the other hand, I've never understood why organizations are so tolerant of bad, dirty data. They waste millions and millions directly because of it (and untold quantities of money in "wasted opportunities"), but are reluctant to spend $15,000 on a data quality engine to help fix a significant portion of the problem.

More Stories By Hollis Tibbetts

Hollis Tibbetts, or @SoftwareHollis as his 50,000+ followers know him on Twitter, is listed on various “top 100 expert lists” for a variety of topics – ranging from Cloud to Technology Marketing, Hollis is by day Evangelist & Software Technology Director at Dell Software. By night and weekends he is a commentator, speaker and all-round communicator about Software, Data and Cloud in their myriad aspects. You can also reach Hollis on LinkedIn – linkedin.com/in/SoftwareHollis. His latest online venture is OnlineBackupNews - a free reference site to help organizations protect their data, applications and systems from threats. Every year IT Downtime Costs $26.5 Billion In Lost Revenue. Even with such high costs, 56% of enterprises in North America and 30% in Europe don’t have a good disaster recovery plan. Online Backup News aims to make sure you all have the news and tips needed to keep your IT Costs down and your information safe by providing best practices, technology insights, strategies, real-world examples and various tips and techniques from a variety of industry experts.

Hollis is a regularly featured blogger at ebizQ, a venue focused on enterprise technologies, with over 100,000 subscribers. He is also an author on Social Media Today "The World's Best Thinkers on Social Media", and maintains a blog focused on protecting data: Online Backup News.
He tweets actively as @SoftwareHollis

Additional information is available at HollisTibbetts.com

All opinions expressed in the author's articles are his own personal opinions vs. those of his employer.

@ThingsExpo Stories
Complete Internet of Things (IoT) embedded device security is not just about the device but involves the entire product’s identity, data and control integrity, and services traversing the cloud. A device can no longer be looked at as an island; it is a part of a system. In fact, given the cross-domain interactions enabled by IoT it could be a part of many systems. Also, depending on where the device is deployed, for example, in the office building versus a factory floor or oil field, security ha...
Amazon has gradually rolled out parts of its IoT offerings in the last year, but these are just the tip of the iceberg. In addition to optimizing their back-end AWS offerings, Amazon is laying the ground work to be a major force in IoT – especially in the connected home and office. Amazon is extending its reach by building on its dominant Cloud IoT platform, its Dash Button strategy, recently announced Replenishment Services, the Echo/Alexa voice recognition control platform, the 6-7 strategic...
Everyone knows that truly innovative companies learn as they go along, pushing boundaries in response to market changes and demands. What's more of a mystery is how to balance innovation on a fresh platform built from scratch with the legacy tech stack, product suite and customers that continue to serve as the business' foundation. In his General Session at 19th Cloud Expo, Michael Chambliss, Head of Engineering at ReadyTalk, discussed why and how ReadyTalk diverted from healthy revenue and mor...
As data explodes in quantity, importance and from new sources, the need for managing and protecting data residing across physical, virtual, and cloud environments grow with it. Managing data includes protecting it, indexing and classifying it for true, long-term management, compliance and E-Discovery. Commvault can ensure this with a single pane of glass solution – whether in a private cloud, a Service Provider delivered public cloud or a hybrid cloud environment – across the heterogeneous enter...
Financial Technology has become a topic of intense interest throughout the cloud developer and enterprise IT communities. Accordingly, attendees at the upcoming 20th Cloud Expo at the Javits Center in New York, June 6-8, 2017, will find fresh new content in a new track called FinTech.
You have great SaaS business app ideas. You want to turn your idea quickly into a functional and engaging proof of concept. You need to be able to modify it to meet customers' needs, and you need to deliver a complete and secure SaaS application. How could you achieve all the above and yet avoid unforeseen IT requirements that add unnecessary cost and complexity? You also want your app to be responsive in any device at any time. In his session at 19th Cloud Expo, Mark Allen, General Manager of...
The 20th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held June 6-8, 2017, at the Javits Center in New York City, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Containers, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportunity. Submit your speaking proposal ...
Bert Loomis was a visionary. This general session will highlight how Bert Loomis and people like him inspire us to build great things with small inventions. In their general session at 19th Cloud Expo, Harold Hannon, Architect at IBM Bluemix, and Michael O'Neill, Strategic Business Development at Nvidia, discussed the accelerating pace of AI development and how IBM Cloud and NVIDIA are partnering to bring AI capabilities to "every day," on-demand. They also reviewed two "free infrastructure" pr...
Unsecured IoT devices were used to launch crippling DDOS attacks in October 2016, targeting services such as Twitter, Spotify, and GitHub. Subsequent testimony to Congress about potential attacks on office buildings, schools, and hospitals raised the possibility for the IoT to harm and even kill people. What should be done? Does the government need to intervene? This panel at @ThingExpo New York brings together leading IoT and security experts to discuss this very serious topic.
More and more brands have jumped on the IoT bandwagon. We have an excess of wearables – activity trackers, smartwatches, smart glasses and sneakers, and more that track seemingly endless datapoints. However, most consumers have no idea what “IoT” means. Creating more wearables that track data shouldn't be the aim of brands; delivering meaningful, tangible relevance to their users should be. We're in a period in which the IoT pendulum is still swinging. Initially, it swung toward "smart for smar...
"Dice has been around for the last 20 years. We have been helping tech professionals find new jobs and career opportunities," explained Manish Dixit, VP of Product and Engineering at Dice, in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
"ReadyTalk is an audio and web video conferencing provider. We've really come to embrace WebRTC as the platform for our future of technology," explained Dan Cunningham, CTO of ReadyTalk, in this SYS-CON.tv interview at WebRTC Summit at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
"At ROHA we develop an app called Catcha. It was developed after we spent a year meeting with, talking to, interacting with senior citizens watching them use their smartphones and talking to them about how they use their smartphones so we could get to know their smartphone behavior," explained Dave Woods, Chief Innovation Officer at ROHA, in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
WebRTC is the future of browser-to-browser communications, and continues to make inroads into the traditional, difficult, plug-in web communications world. The 6th WebRTC Summit continues our tradition of delivering the latest and greatest presentations within the world of WebRTC. Topics include voice calling, video chat, P2P file sharing, and use cases that have already leveraged the power and convenience of WebRTC.
The many IoT deployments around the world are busy integrating smart devices and sensors into their enterprise IT infrastructures. Yet all of this technology – and there are an amazing number of choices – is of no use without the software to gather, communicate, and analyze the new data flows. Without software, there is no IT. In this power panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, Dave McCarthy, Director of Products at Bsquare Corporation; Alan Williamson, Principal...
20th Cloud Expo, taking place June 6-8, 2017, at the Javits Center in New York City, NY, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy.
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life sett...
An IoT product’s log files speak volumes about what’s happening with your products in the field, pinpointing current and potential issues, and enabling you to predict failures and save millions of dollars in inventory. But until recently, no one knew how to listen. In his session at @ThingsExpo, Dan Gettens, Chief Research Officer at OnProcess, discussed recent research by Massachusetts Institute of Technology and OnProcess Technology, where MIT created a new, breakthrough analytics model for ...
Successful digital transformation requires new organizational competencies and capabilities. Research tells us that the biggest impediment to successful transformation is human; consequently, the biggest enabler is a properly skilled and empowered workforce. In the digital age, new individual and collective competencies are required. In his session at 19th Cloud Expo, Bob Newhouse, CEO and founder of Agilitiv, drew together recent research and lessons learned from emerging and established compa...
20th Cloud Expo, taking place June 6-8, 2017, at the Javits Center in New York City, NY, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy.