Welcome!

Industrial IoT Authors: Stackify Blog, Yeshim Deniz, Elizabeth White, SmartBear Blog, Liz McMillan

Related Topics: Microservices Expo, Industrial IoT

Microservices Expo: Article

$3 Trillion Problem: Three Best Practices for Today's Dirty Data Pandemic

Maybe your software is healthy, but is your data terminally ill?

In survey after survey, about half of IT executives consistently agree that data quality and data consistency is one of the biggest roadblocks to them getting full value from their data.

This has been consistently true all since the Chinese invented the abacus. I suspect it will be true long after quantum computing has solved every other problem that humanity faces.

 

Incorrect, inconsistent, fraudulent and redundant data cost the U.S. economy over $3 Trillion a year - an astounding figure that is over twice the amount of the 2011 Federal Deficit.

Similarly, many experts estimate that HALF the money spent on developers goes towards "software repair". So we're living in a world of sick software and dirty data. And the cost of all this is staggering.

 

I've long been a proponent of healthy software - but healthy software can only function properly in the presence of healthy data. Does quality software even matter if the underlying data are defective? Agreed - that's pushing the point to the extreme.

The rapid, iterative, continuous testing model has measurably improved the quality of software development. Evangelists such as Kent Beck have had a huge impact on this. I recently posted a freely downloadable white paper on this topic. But where are the evangelists for data quality? Where is an open source "JUnit for Data" and if it's out there, why isn't everyone using it?

The Cost of Bad Data
Anyone care to make a guess at how much money is wasted every year due to dirty or duplicate / redundant data? I'll start by presenting one common user story - one you probably have also recently experienced. And then expand on it.

Recently, I went to my mailbox and waiting for me was yet another invitation from a major bank to join their credit card program.

This shouldn't come as a surprise, as people everywhere are deluged by credit card offers. Except that I already have the particular card in question. Not only that, but because the particular bank in question has managed to acquire a number of other banks and credit card lines of business, between my personal and my corporation, I believe I now have five Visa cards from this particular bank.

I also occasionally get mail from them offering me cash bonuses to open up a checking account at their bank. Probably wasted postage, as I already have two checking accounts there. I suppose I could open up a third, just to get the $100.

Every month, I get a significant number of expensive looking direct mail offers from this bank, often with slightly different variations on my name, which I promptly throw away. Aside from the impact on the environment and the wasted direct mail expense, it's a bit irritating to me. I hate junk mail, and I feel compelled to shred things like credit card offers. So they've burdened me (an existing customer) with yet another "thing to do". So they've spent money, hurt the environment, irritated an existing customer, and now I get to make fun of them online. Bad investment on their part.

QAS (an Experian company) estimates that the average company wastes $180,000 per year simply on direct mail that does not reach the intended recipient because of inaccurate data. But this is just one miniscule slice of the data quality issue. In fact it's only one small part of the "direct mail" data quality issue. A lot more money is wasted in "inappropriate offers" and "duplicate offers" such as the ones my bank sends. I also get offers from several companies that are convinced that I'm married to the previous owner of my house. Those offers reach me, yet are immediately shredded. No sense opening them. So the "big picture" just for direct mail is much larger than what QAS shows.

None of this accounts for the "irritation" factor - what is the cost of annoying existing customers (or potential customers) with badly targeted offers?

Yet direct mail and all other forms of advertising together add up to a tiny slice of the bad-data pie.

Fraud Is a Bad Data Problem
Some time back, the US Attorney General's office stated that they believed that 14 percent of health care dollars are wasted in fraud or inaccurate billing.

Why do I lump fraud in with "bad data"? Bad data comes in two forms - accidentally created bad data and intentionally created bad data (for example, fraudulent billing). Either way, it's bad data. It doesn't matter how it got there, it's defective. And a lot of it could be detected and remediated "at the point of entry".

Healthcare accounts for over 16% of the U.S. GDP (Canada is 10%, Australia is 9% as a comparison). The U.S. GDP is currently approximately $14 Trillion - therefore healthcare spending in the U.S. amounts to $2.25 trillion. And the cost of bad data in Healthcare- $314 Billion.

That's just for fraud or inaccurate billing. What about other areas in healthcare (e.g. lost data, "bad patient outcomes", duplicate patient testing, manual rework, etc.)?  Even if we round down, we're still taking about $500 Billion for one industry alone.  If I extrapolate that out to the entire U.S. economy, we're talking about a $3.1 Trillion problem.  No matter how far off my estimate is (on the high side or the low side), it's a problem of astonishing proportions.

Cost of Bad Data to Business and IT
A classic but very worthwhile book from information governance expert Larry English posits that the business cost of nonquality data may be as high as 10-25% of an organization's revenue, and that as much as 50% of the typical IT budget may be spent in "information scrap and rework".  If that is the case, then my $3.1 estimate is not out of line.

In the introduction to his book, English states "With this proliferation of information, the challenge of managing data and providing quality information has never been more important or complex."

That was in 1999. With so much more data today, and a surprising lack of attention to the data quality issue, I can only imagine the total economic impact of things today. I do not doubt that the cost of bad data has risen.

Dealing with bad data at the I.T. level is expensive. But if I.T. doesn't deal with the bad data problem, then the cost gets pushed downstream to the "business", where the business costs are geometrically higher. The model is not that different from that of "healthy software", where it costs $1 to uncover a defect during developer/unit testing, but $100 to fix that defect if the software is released to the end-users.

"Low Hanging Fruit" - Best Practices for Bad Data Avoidance
I am not saying that there are any easy fixes to the bad data problem. Even something as relatively simple as cleaning, standardizing and de-duping a mailing list with 10,000,000 entries is essentially impossible to get completely right no matter how much effort is put into it. Yet there are some relatively easy things that can be done to substantially improve the quality of our data.  As with so many other problems in life, the some version of the 80/20 rule applies to this as well.

Best Practice #1: When integrating data, fix the quality problem during integration
As data are added or integrated, data should be tested. Profiling is a simple, fast, relatively easily implemented and highly effective way for eliminating significant volumes of defective data.

When developers write a new application for the input of some new data, it's normal for input fields to be "validated" - a simple "hard coded" form of profiling. Month number needs to be between 1-12. 13 is never correct.  Not rocket science. And it's universally done.

Yet people have far fewer reservations about integrating data from here, there and everywhere - often not checking for even the most egregious data errors, and thereby polluting the organizational drinking water (i.e. all the data and applications downstream).

I strongly suspect that's why I get so many offers from my current mega-bank. Since the banking implosion, this particular bank has purchased every other bank around. And their credit card businesses. And their marketing databases. And (apparently) smashed them together. So I get offers for Hollis Tibbetts, Hollis W. Tibbetts, Hollis Winslow Tibbetts, Hollis Tibbets, Hollis Tibbitts and so on.

Integration of data isn't necessarily just a "big bang" event - like when one company acquires another and smashes all the data together, or when two divisional customer applications get merged. It can be more insidious and more when you have "trickle" integration - the slow feed of new data from one system into another (either within the organization or from customers/suppliers/partners).  This is the class of integration that is causing a lot of the problems previously discussed with healthcare fraud.

Either way, FIX IT before integrating it. Once the poison enters the corporate drinking water, it's a lot harder to get out (not just technically, but especially politically/organizationally).

Best Practice #2: When migrating data, fix the data problem as PART of the migration project
Spending $1 billion to upgrade your Seibel system like the US Government is doing? Sounds like a great time to fix your data quality problem.

If you're doing something like migrating your customer data from Seibel to Netsuite or Salesforce.com, data quality should be a major element in your project plan (and budget). Fixing the problems during the migration are easier than fixing them later:

  1. You probably already possess a lot of knowledge about the existing legacy systems, the types of problems in the data. But your new system is relatively unknown to you. So it's likely to be easier to fix data issues from a technical perspective BEFORE they get loaded into the new system.
  2. As part of the data migration process, you can export the data to a staging platform (On Prem or Cloud), leverage any number of data quality tools/engines, and then import the data into the the application platform.  This approach may partially pay for itself in an easier/smoother upgrade to the new application, but that's a rounding error in the overall scheme of things.
  3. Organizationally and politically, companies are much more likely to spend money to clean data if it's part of a project like "upgrade the CRM system". I'd hate to be the CIO that spends a mountain of money to upgrade the CRM system and then goes back to the board asking for another mountain of money to fix all the bad data that just got loaded into the CRM system. That's how CIO's become ex-CIOs.

Best Practice #3: Data profiling and data de-duplication engines
Data profiling engines are a great technology for quickly improving the quality of data as it is integrated from one system into another. At the highest level, they are an engine that scans data, and applies certain easily definable rules to data elements, such as formats, ranges, allowable values and can evaluate relationships between different fields.

Furthermore, these engines can also be used to analyze existing data stores very rapidly and generate "exceptions files" for manual, or semi-automated remediation (if anyone can find a totally automated data remediation system, I'd love to know about it). So they can be used in "continuous testing" or "batch testing" mode.  In batch mode, they're ideal for application migrations or big-bang integrations, as they're easiest to use them if you have your data in something like a staging database.  But they can also be used to test data as it is "trickle integrated" into production systems.

De-duping engines generally fit into the same category. I haven't seen them be as effective as data profiling engines, yet I believe they're essential. The technology for de-duping is considerably more sophisticated - with a large number of different algorithms and tunable thresholds and such. It's a harder class of technology to implement. More manual effort is involved. And, unlike profiling (where there is NEVER a month "13"), de-duping can "get it wrong", so the technology needs to be applied more selectively.

Conclusion
I've never understood why these engines haven't been more popular. There is no "JUnit for data" as far as I know. But commercial solutions are available - they're not terribly expensive and rapidly pay for themselves.

On the other hand, I've never understood why organizations are so tolerant of bad, dirty data. They waste millions and millions directly because of it (and untold quantities of money in "wasted opportunities"), but are reluctant to spend $15,000 on a data quality engine to help fix a significant portion of the problem.

More Stories By Hollis Tibbetts

Hollis Tibbetts, or @SoftwareHollis as his 50,000+ followers know him on Twitter, is listed on various “top 100 expert lists” for a variety of topics – ranging from Cloud to Technology Marketing, Hollis is by day Evangelist & Software Technology Director at Dell Software. By night and weekends he is a commentator, speaker and all-round communicator about Software, Data and Cloud in their myriad aspects. You can also reach Hollis on LinkedIn – linkedin.com/in/SoftwareHollis. His latest online venture is OnlineBackupNews - a free reference site to help organizations protect their data, applications and systems from threats. Every year IT Downtime Costs $26.5 Billion In Lost Revenue. Even with such high costs, 56% of enterprises in North America and 30% in Europe don’t have a good disaster recovery plan. Online Backup News aims to make sure you all have the news and tips needed to keep your IT Costs down and your information safe by providing best practices, technology insights, strategies, real-world examples and various tips and techniques from a variety of industry experts.

Hollis is a regularly featured blogger at ebizQ, a venue focused on enterprise technologies, with over 100,000 subscribers. He is also an author on Social Media Today "The World's Best Thinkers on Social Media", and maintains a blog focused on protecting data: Online Backup News.
He tweets actively as @SoftwareHollis

Additional information is available at HollisTibbetts.com

All opinions expressed in the author's articles are his own personal opinions vs. those of his employer.

@ThingsExpo Stories
SYS-CON Events announced today that Evatronix will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Evatronix SA offers comprehensive solutions in the design and implementation of electronic systems, in CAD / CAM deployment, and also is a designer and manufacturer of advanced 3D scanners for professional applications.
To get the most out of their data, successful companies are not focusing on queries and data lakes, they are actively integrating analytics into their operations with a data-first application development approach. Real-time adjustments to improve revenues, reduce costs, or mitigate risk rely on applications that minimize latency on a variety of data sources. In his session at @BigDataExpo, Jack Norris, Senior Vice President, Data and Applications at MapR Technologies, reviewed best practices to ...
SYS-CON Events announced today that Synametrics Technologies will exhibit at SYS-CON's 22nd International Cloud Expo®, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. Synametrics Technologies is a privately held company based in Plainsboro, New Jersey that has been providing solutions for the developer community since 1997. Based on the success of its initial product offerings such as WinSQL, Xeams, SynaMan and Syncrify, Synametrics continues to create and hone inn...
"Evatronix provides design services to companies that need to integrate the IoT technology in their products but they don't necessarily have the expertise, knowledge and design team to do so," explained Adam Morawiec, VP of Business Development at Evatronix, in this SYS-CON.tv interview at @ThingsExpo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Recently, REAN Cloud built a digital concierge for a North Carolina hospital that had observed that most patient call button questions were repetitive. In addition, the paper-based process used to measure patient health metrics was laborious, not in real-time and sometimes error-prone. In their session at 21st Cloud Expo, Sean Finnerty, Executive Director, Practice Lead, Health Care & Life Science at REAN Cloud, and Dr. S.P.T. Krishnan, Principal Architect at REAN Cloud, discussed how they built...
No hype cycles or predictions of a gazillion things here. IoT is here. You get it. You know your business and have great ideas for a business transformation strategy. What comes next? Time to make it happen. In his session at @ThingsExpo, Jay Mason, an Associate Partner of Analytics, IoT & Cybersecurity at M&S Consulting, presented a step-by-step plan to develop your technology implementation strategy. He also discussed the evaluation of communication standards and IoT messaging protocols, data...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, led attendees through the exciting evolution of the cloud. He looked at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering m...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
The 22nd International Cloud Expo | 1st DXWorld Expo has announced that its Call for Papers is open. Cloud Expo | DXWorld Expo, to be held June 5-7, 2018, at the Javits Center in New York, NY, brings together Cloud Computing, Digital Transformation, Big Data, Internet of Things, DevOps, Machine Learning and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding busin...
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
22nd International Cloud Expo, taking place June 5-7, 2018, at the Javits Center in New York City, NY, and co-located with the 1st DXWorld Expo will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud ...
22nd International Cloud Expo, taking place June 5-7, 2018, at the Javits Center in New York City, NY, and co-located with the 1st DXWorld Expo will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud ...
DevOps at Cloud Expo – being held June 5-7, 2018, at the Javits Center in New York, NY – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's largest enterprises – and delivering real results. Among the proven benefits,...
@DevOpsSummit at Cloud Expo, taking place June 5-7, 2018, at the Javits Center in New York City, NY, is co-located with 22nd Cloud Expo | 1st DXWorld Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait...
Cloud Expo | DXWorld Expo have announced the conference tracks for Cloud Expo 2018. Cloud Expo will be held June 5-7, 2018, at the Javits Center in New York City, and November 6-8, 2018, at the Santa Clara Convention Center, Santa Clara, CA. Digital Transformation (DX) is a major focus with the introduction of DX Expo within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive ov...
SYS-CON Events announced today that T-Mobile exhibited at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. As America's Un-carrier, T-Mobile US, Inc., is redefining the way consumers and businesses buy wireless services through leading product and service innovation. The Company's advanced nationwide 4G LTE network delivers outstanding wireless experiences to 67.4 million customers who are unwilling to compromise on qua...
SYS-CON Events announced today that Cedexis will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Cedexis is the leader in data-driven enterprise global traffic management. Whether optimizing traffic through datacenters, clouds, CDNs, or any combination, Cedexis solutions drive quality and cost-effectiveness. For more information, please visit https://www.cedexis.com.
SYS-CON Events announced today that Google Cloud has been named “Keynote Sponsor” of SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Companies come to Google Cloud to transform their businesses. Google Cloud’s comprehensive portfolio – from infrastructure to apps to devices – helps enterprises innovate faster, scale smarter, stay secure, and do more with data than ever before.