Click here to close now.




















Welcome!

Industrial IoT Authors: Joe Pruitt, Pat Romanski, Dana Gardner, Roger Strukhoff, Elizabeth White

Related Topics: @CloudExpo, Microservices Expo

@CloudExpo: Blog Feed Post

Applying Scalability Patterns to Infrastructure Architecture

Too often software design patterns are overlooked by network and application delivery network architects

Too often software design patterns are overlooked by network and application delivery network architects but these patterns are often equally applicable to addressing a broad range of architectural challenges in the application delivery tier of the data center.

The “High Scalability” blog is fast becoming one of my favorite reads. Last week did not disappoint with a post highlighting a set of scalability design patterns that was, apparently, inspired by yet another High Scalability post on “6 Ways to Kill Your Servers: Learning to Scale the Hard Way.

cheese-curds
Credit:Michael Chow/azcentral.com

This particular post caught my attention primarily because although I’ve touched on many of these patterns in the past, I’ve never thought to call them

what they are: scalability patterns. That’s probably a side-effect of forgetting that building an architecture of any kind is at its core computer science and thus algorithms and design patterns are applicable to both micro- and macro-architectures, such as those used when designing a scalable architecture.

This is actually more common than you’d think, as it’s rarely the case that a network guy and a developer sit down and discuss scalability patterns over beer and deep fried cheese curds (hey, I live in Wisconsin and it’s my blog post so just stop making faces until you’ve tried it). Developers and architects sit over there and think about how to design a scalable application from the perspective of its components – databases, application servers, middleware, etc… Network architects sit over here and think about how to scale an application from the perspective of network components – load balancers, trunks, VLANs, and switches. The thing is that the scalability patterns leveraged by developers and architects can almost universally be abstracted and applied to the application delivery network – the set of components integrated as a means to ensure availability, performance, and security of applications. That’s why devops is so important and why devops has to bring dev into ops as much as its necessary to bring some ops into dev. There needs to be more cross-over, more discussion, between the two groups if not an entirely new group in order to leverage the knowledge and skills that each has in new and innovative ways.

ABSTRACT and APPLY

So the aforementioned post is just a summary of a longer and more detailed post, but for purposes of this post I think the summary will do with the caveat that the original, “Scalability patterns and an interesting story...” by Jesper Söderlund is a great read that should definitely be on your “to read” list in the very near future.

For now, let’s briefly touch on the scalability patterns and sub-patterns Jesper described with some commentary on how they fit into scalability from a network and application delivery network perspective. The original text from the High Scalability blog are in red(dish) text.

  • Load distribution - Spread the system load across multiple processing units

    This is a horizontal scaling strategy that is well-understood. It may take the form of “clustering” or “load balancing” but in both cases it is essentially an aggregation coupled with a distributed processing model. The secret sauce is almost always in the way in which the aggregation point (strategic point of control) determines how best to distribute the load across the “multiple processing units.”  
    • load balancing / load sharing - Spreading the load across many components with equal properties for handling the request
      This is what most people think of when they hear “load balancing”, it’s just that at the application delivery layer we think in terms of directing application requests (usually HTTP but can just about any application protocol) to equal “servers” (physical or virtual) that handle the request. This is a “scaling out” approach that is most typically associated today with cloud computing and auto-scaling: launch additional clones of applications as virtual instances in order to increase the total capacity of an application. The load balancing distributes requests across all instances based on the configured load balancing algorithm.
    • Partitioning - Spreading the load across many components by routing an individual request to a component that owns that data specific
      This is really where the architecture comes in and where efficiency and performance can be dramatically increased in an image application delivery architecture. Rather than each instance of an application being identical to every other one, each instance (or pool of instances) is designated as the “owner”. This allows for devops to tweak configurations of the underlying operating system, web and application server software for the specific type of request being handled. This is, also, where the difference between “application switching” and “load balancing” becomes abundantly clear as “application switching” is used as a means to determine where to route a particular request which is/can be then load balanced across a pool of resources. It’s a subtle distinction but an important one when architecting not only efficient and fast but resilient and reliable delivery networks.
          • Vertical partitioning - Spreading the load across the functional boundaries of a problem space, separate functions being handled by different processing units
            When it comes to routing application requests we really don’t separate by function unless that function is easily associated with a URI. The most common implementation of vertical partitioning at the application switching layer will be by content. Example: creating resource pools based on the Content-Type HTTP header: images in pool “image servers” and content in pool “content servers”. This allows for greater optimization of the web/application server based on the usage pattern and the content type, which can often also be related to a range of sizes. This also, in a distributed environment, allows architects to leverage say cloud-based storage for static content while maintaining dynamic content (and its associated data stores) on-premise. This kind of hybrid cloud strategy has been postulated as one of the most common use cases since the first wispy edges of cloud were seen on the horizon.
          • Horizontal partitioning - Spreading a single type of data element across many instances, according to some partitioning key, e.g. hashing the player id and doing a modulus operation, etc. Quite often referred to as sharding.
            This sub-pattern is inline with the way in which persistence-based load balancing is accomplished, as well as the handling of object caching. This also describes the way in which you might direct requests received from specific users to designated instances that are specifically designed to handle their unique needs or requirements, such as the separation of “gold” users from “free” users based on some partitioning key which in HTTP land is often a cookie containing the relevant data.
    • Queuing and batch - Achieve efficiencies of scale by processing batches of data, usually because the overhead of an operation is amortized across multiple request 
      I admit defeat in applying this sub-pattern to application delivery. I know, you’re surprised, but this really is very specific to middleware and aside from the ability to leverage queuing for Quality of Service (QoS) at the delivery layer this one is just not fitting in well. If you have an idea how this fits, feel free to let me know – I’d love to be able to apply all the scalability patterns and sub-patterns to a broader infrastructure architecture.
      • Relaxing of data constraints - Many different techniques and trade-offs with regards to the immediacy of processing / storing / access to data fall in this strategy
        This one takes us to storage virtualization and tiering and the way in which data storage and access is intelligently handled in varying properties based on usage and prioritization of the content. If one relaxes the constraints around access times for certain types of data, it is possible to achieve a higher efficiency use of storage by subjugating some content to secondary and tertiary tiers which may not have the same performance attributes as your primary storage tier. And make no mistake, storage virtualization is a part of the application delivery network – has been since its inception – and as cloud computing and virtualization have grown so has the importance of a well-defined storage tiering strategy.

        We can bring this back up to the application layer by considering that a relaxation of data constraints with regards to immediacy of access can be applied by architecting a solution that separates data reads from writes. This implies eventual consistency, as data updated/written to one database must necessarily be replicated to the databases from which reads are, well, read, but that’s part of relaxing a data constraint. This is a technique used by many large, social sites such as Facebook and Plenty of Fish in order to scale the system to the millions upon millions of requests it handles in any given hour.
      • Parallelization - Work on the same task in parallel on multiple processing units
        I’m not going to be able to apply this one either, unless it was in conjunction with optimizing something like MapReduce and SPDY. I’ve been thinking hard about this one, and the problem is the implication that “same task” is really the “same task”, and that processing is distributed. That said, if the actual task can be performed by multiple processing units, then an application delivery controller could certainly be configured to recognize that a specific URL should be essentially sent to some other proxy/solution that performs the actual distribution, but the processing model here deviates sharply from the request-reply paradigm under which most applications today operate.

    DEVOPS CAN MAKE THIS HAPPEN

    I hate to sound-off too much on the “devops” trumpet, but one of the primary ways in which devops will be of significant value in the future is exactly in this type of practical implementation. Only by recognizing that many architectural patterns are applicable to not only application but infrastructure architecture can we start to apply a whole lot of “lessons that have already been learned” by developers and architects to emerging infrastructure architectural models. This abstraction and application from well-understood patterns in application design and architecture will be invaluable in designing the new network; the next iteration of network theory and implementation that will allow it to scale along with the applications it is delivering.


    Related blogs & articles:


    Follow me on Twitter View Lori's profile on SlideShare friendfeed icon_facebook

    AddThis Feed Button Bookmark and Share

    Read the original blog entry...

    More Stories By Lori MacVittie

    Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

    @ThingsExpo Stories
    SYS-CON Events announced today that HPM Networks will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. For 20 years, HPM Networks has been integrating technology solutions that solve complex business challenges. HPM Networks has designed solutions for both SMB and enterprise customers throughout the San Francisco Bay Area.
    For IoT to grow as quickly as analyst firms’ project, a lot is going to fall on developers to quickly bring applications to market. But the lack of a standard development platform threatens to slow growth and make application development more time consuming and costly, much like we’ve seen in the mobile space. In his session at @ThingsExpo, Mike Weiner, Product Manager of the Omega DevCloud with KORE Telematics Inc., discussed the evolving requirements for developers as IoT matures and conducted a live demonstration of how quickly application development can happen when the need to comply wit...
    The Internet of Everything (IoE) brings together people, process, data and things to make networked connections more relevant and valuable than ever before – transforming information into knowledge and knowledge into wisdom. IoE creates new capabilities, richer experiences, and unprecedented opportunities to improve business and government operations, decision making and mission support capabilities.
    Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Architect for the Internet of Things and Intelligent Systems, described how to revolutionize your archit...
    MuleSoft has announced the findings of its 2015 Connectivity Benchmark Report on the adoption and business impact of APIs. The findings suggest traditional businesses are quickly evolving into "composable enterprises" built out of hundreds of connected software services, applications and devices. Most are embracing the Internet of Things (IoT) and microservices technologies like Docker. A majority are integrating wearables, like smart watches, and more than half plan to generate revenue with APIs within the next year.
    Growth hacking is common for startups to make unheard-of progress in building their business. Career Hacks can help Geek Girls and those who support them (yes, that's you too, Dad!) to excel in this typically male-dominated world. Get ready to learn the facts: Is there a bias against women in the tech / developer communities? Why are women 50% of the workforce, but hold only 24% of the STEM or IT positions? Some beginnings of what to do about it! In her Opening Keynote at 16th Cloud Expo, Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, d...
    In his keynote at 16th Cloud Expo, Rodney Rogers, CEO of Virtustream, discussed the evolution of the company from inception to its recent acquisition by EMC – including personal insights, lessons learned (and some WTF moments) along the way. Learn how Virtustream’s unique approach of combining the economics and elasticity of the consumer cloud model with proper performance, application automation and security into a platform became a breakout success with enterprise customers and a natural fit for the EMC Federation.
    The Internet of Things is not only adding billions of sensors and billions of terabytes to the Internet. It is also forcing a fundamental change in the way we envision Information Technology. For the first time, more data is being created by devices at the edge of the Internet rather than from centralized systems. What does this mean for today's IT professional? In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists addressed this very serious issue of profound change in the industry.
    Discussions about cloud computing are evolving into discussions about enterprise IT in general. As enterprises increasingly migrate toward their own unique clouds, new issues such as the use of containers and microservices emerge to keep things interesting. In this Power Panel at 16th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the state of cloud computing today, and what enterprise IT professionals need to know about how the latest topics and trends affect their organization.
    It is one thing to build single industrial IoT applications, but what will it take to build the Smart Cities and truly society-changing applications of the future? The technology won’t be the problem, it will be the number of parties that need to work together and be aligned in their motivation to succeed. In his session at @ThingsExpo, Jason Mondanaro, Director, Product Management at Metanga, discussed how you can plan to cooperate, partner, and form lasting all-star teams to change the world and it starts with business models and monetization strategies.
    Converging digital disruptions is creating a major sea change - Cisco calls this the Internet of Everything (IoE). IoE is the network connection of People, Process, Data and Things, fueled by Cloud, Mobile, Social, Analytics and Security, and it represents a $19Trillion value-at-stake over the next 10 years. In her keynote at @ThingsExpo, Manjula Talreja, VP of Cisco Consulting Services, discussed IoE and the enormous opportunities it provides to public and private firms alike. She will share what businesses must do to thrive in the IoE economy, citing examples from several industry sectors.
    There will be 150 billion connected devices by 2020. New digital businesses have already disrupted value chains across every industry. APIs are at the center of the digital business. You need to understand what assets you have that can be exposed digitally, what their digital value chain is, and how to create an effective business model around that value chain to compete in this economy. No enterprise can be complacent and not engage in the digital economy. Learn how to be the disruptor and not the disruptee.
    Akana has released Envision, an enhanced API analytics platform that helps enterprises mine critical insights across their digital eco-systems, understand their customers and partners and offer value-added personalized services. “In today’s digital economy, data-driven insights are proving to be a key differentiator for businesses. Understanding the data that is being tunneled through their APIs and how it can be used to optimize their business and operations is of paramount importance,” said Alistair Farquharson, CTO of Akana.
    Business as usual for IT is evolving into a "Make or Buy" decision on a service-by-service conversation with input from the LOBs. How does your organization move forward with cloud? In his general session at 16th Cloud Expo, Paul Maravei, Regional Sales Manager, Hybrid Cloud and Managed Services at Cisco, discusses how Cisco and its partners offer a market-leading portfolio and ecosystem of cloud infrastructure and application services that allow you to uniquely and securely combine cloud business applications and services across multiple cloud delivery models.
    The enterprise market will drive IoT device adoption over the next five years. In his session at @ThingsExpo, John Greenough, an analyst at BI Intelligence, division of Business Insider, analyzed how companies will adopt IoT products and the associated cost of adopting those products. John Greenough is the lead analyst covering the Internet of Things for BI Intelligence- Business Insider’s paid research service. Numerous IoT companies have cited his analysis of the IoT. Prior to joining BI Intelligence, he worked analyzing bank technology for Corporate Insight and The Clearing House Payment...
    "Optimal Design is a technology integration and product development firm that specializes in connecting devices to the cloud," stated Joe Wascow, Co-Founder & CMO of Optimal Design, in this SYS-CON.tv interview at @ThingsExpo, held June 9-11, 2015, at the Javits Center in New York City.
    SYS-CON Events announced today that CommVault has been named “Bronze Sponsor” of SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. A singular vision – a belief in a better way to address current and future data management needs – guides CommVault in the development of Singular Information Management® solutions for high-performance data protection, universal availability and simplified management of data on complex storage networks. CommVault's exclusive single-platform architecture gives companies unp...
    Electric Cloud and Arynga have announced a product integration partnership that will bring Continuous Delivery solutions to the automotive Internet-of-Things (IoT) market. The joint solution will help automotive manufacturers, OEMs and system integrators adopt DevOps automation and Continuous Delivery practices that reduce software build and release cycle times within the complex and specific parameters of embedded and IoT software systems.
    "ciqada is a combined platform of hardware modules and server products that lets people take their existing devices or new devices and lets them be accessible over the Internet for their users," noted Geoff Engelstein of ciqada, a division of Mars International, in this SYS-CON.tv interview at @ThingsExpo, held June 9-11, 2015, at the Javits Center in New York City.
    Internet of Things is moving from being a hype to a reality. Experts estimate that internet connected cars will grow to 152 million, while over 100 million internet connected wireless light bulbs and lamps will be operational by 2020. These and many other intriguing statistics highlight the importance of Internet powered devices and how market penetration is going to multiply many times over in the next few years.