Welcome!

XML Authors: Liz McMillan, Ignacio M. Llorente, Carmen Gonzalez, David Dossot, Yeshim Deniz

Related Topics: Cloud Expo, SOA & WOA

Cloud Expo: Blog Feed Post

Applying Scalability Patterns to Infrastructure Architecture

Too often software design patterns are overlooked by network and application delivery network architects

Too often software design patterns are overlooked by network and application delivery network architects but these patterns are often equally applicable to addressing a broad range of architectural challenges in the application delivery tier of the data center.

The “High Scalability” blog is fast becoming one of my favorite reads. Last week did not disappoint with a post highlighting a set of scalability design patterns that was, apparently, inspired by yet another High Scalability post on “6 Ways to Kill Your Servers: Learning to Scale the Hard Way.

cheese-curds
Credit:Michael Chow/azcentral.com

This particular post caught my attention primarily because although I’ve touched on many of these patterns in the past, I’ve never thought to call them

what they are: scalability patterns. That’s probably a side-effect of forgetting that building an architecture of any kind is at its core computer science and thus algorithms and design patterns are applicable to both micro- and macro-architectures, such as those used when designing a scalable architecture.

This is actually more common than you’d think, as it’s rarely the case that a network guy and a developer sit down and discuss scalability patterns over beer and deep fried cheese curds (hey, I live in Wisconsin and it’s my blog post so just stop making faces until you’ve tried it). Developers and architects sit over there and think about how to design a scalable application from the perspective of its components – databases, application servers, middleware, etc… Network architects sit over here and think about how to scale an application from the perspective of network components – load balancers, trunks, VLANs, and switches. The thing is that the scalability patterns leveraged by developers and architects can almost universally be abstracted and applied to the application delivery network – the set of components integrated as a means to ensure availability, performance, and security of applications. That’s why devops is so important and why devops has to bring dev into ops as much as its necessary to bring some ops into dev. There needs to be more cross-over, more discussion, between the two groups if not an entirely new group in order to leverage the knowledge and skills that each has in new and innovative ways.

ABSTRACT and APPLY

So the aforementioned post is just a summary of a longer and more detailed post, but for purposes of this post I think the summary will do with the caveat that the original, “Scalability patterns and an interesting story...” by Jesper Söderlund is a great read that should definitely be on your “to read” list in the very near future.

For now, let’s briefly touch on the scalability patterns and sub-patterns Jesper described with some commentary on how they fit into scalability from a network and application delivery network perspective. The original text from the High Scalability blog are in red(dish) text.

  • Load distribution - Spread the system load across multiple processing units

    This is a horizontal scaling strategy that is well-understood. It may take the form of “clustering” or “load balancing” but in both cases it is essentially an aggregation coupled with a distributed processing model. The secret sauce is almost always in the way in which the aggregation point (strategic point of control) determines how best to distribute the load across the “multiple processing units.”  
    • load balancing / load sharing - Spreading the load across many components with equal properties for handling the request
      This is what most people think of when they hear “load balancing”, it’s just that at the application delivery layer we think in terms of directing application requests (usually HTTP but can just about any application protocol) to equal “servers” (physical or virtual) that handle the request. This is a “scaling out” approach that is most typically associated today with cloud computing and auto-scaling: launch additional clones of applications as virtual instances in order to increase the total capacity of an application. The load balancing distributes requests across all instances based on the configured load balancing algorithm.
    • Partitioning - Spreading the load across many components by routing an individual request to a component that owns that data specific
      This is really where the architecture comes in and where efficiency and performance can be dramatically increased in an image application delivery architecture. Rather than each instance of an application being identical to every other one, each instance (or pool of instances) is designated as the “owner”. This allows for devops to tweak configurations of the underlying operating system, web and application server software for the specific type of request being handled. This is, also, where the difference between “application switching” and “load balancing” becomes abundantly clear as “application switching” is used as a means to determine where to route a particular request which is/can be then load balanced across a pool of resources. It’s a subtle distinction but an important one when architecting not only efficient and fast but resilient and reliable delivery networks.
          • Vertical partitioning - Spreading the load across the functional boundaries of a problem space, separate functions being handled by different processing units
            When it comes to routing application requests we really don’t separate by function unless that function is easily associated with a URI. The most common implementation of vertical partitioning at the application switching layer will be by content. Example: creating resource pools based on the Content-Type HTTP header: images in pool “image servers” and content in pool “content servers”. This allows for greater optimization of the web/application server based on the usage pattern and the content type, which can often also be related to a range of sizes. This also, in a distributed environment, allows architects to leverage say cloud-based storage for static content while maintaining dynamic content (and its associated data stores) on-premise. This kind of hybrid cloud strategy has been postulated as one of the most common use cases since the first wispy edges of cloud were seen on the horizon.
          • Horizontal partitioning - Spreading a single type of data element across many instances, according to some partitioning key, e.g. hashing the player id and doing a modulus operation, etc. Quite often referred to as sharding.
            This sub-pattern is inline with the way in which persistence-based load balancing is accomplished, as well as the handling of object caching. This also describes the way in which you might direct requests received from specific users to designated instances that are specifically designed to handle their unique needs or requirements, such as the separation of “gold” users from “free” users based on some partitioning key which in HTTP land is often a cookie containing the relevant data.
    • Queuing and batch - Achieve efficiencies of scale by processing batches of data, usually because the overhead of an operation is amortized across multiple request 
      I admit defeat in applying this sub-pattern to application delivery. I know, you’re surprised, but this really is very specific to middleware and aside from the ability to leverage queuing for Quality of Service (QoS) at the delivery layer this one is just not fitting in well. If you have an idea how this fits, feel free to let me know – I’d love to be able to apply all the scalability patterns and sub-patterns to a broader infrastructure architecture.
      • Relaxing of data constraints - Many different techniques and trade-offs with regards to the immediacy of processing / storing / access to data fall in this strategy
        This one takes us to storage virtualization and tiering and the way in which data storage and access is intelligently handled in varying properties based on usage and prioritization of the content. If one relaxes the constraints around access times for certain types of data, it is possible to achieve a higher efficiency use of storage by subjugating some content to secondary and tertiary tiers which may not have the same performance attributes as your primary storage tier. And make no mistake, storage virtualization is a part of the application delivery network – has been since its inception – and as cloud computing and virtualization have grown so has the importance of a well-defined storage tiering strategy.

        We can bring this back up to the application layer by considering that a relaxation of data constraints with regards to immediacy of access can be applied by architecting a solution that separates data reads from writes. This implies eventual consistency, as data updated/written to one database must necessarily be replicated to the databases from which reads are, well, read, but that’s part of relaxing a data constraint. This is a technique used by many large, social sites such as Facebook and Plenty of Fish in order to scale the system to the millions upon millions of requests it handles in any given hour.
      • Parallelization - Work on the same task in parallel on multiple processing units
        I’m not going to be able to apply this one either, unless it was in conjunction with optimizing something like MapReduce and SPDY. I’ve been thinking hard about this one, and the problem is the implication that “same task” is really the “same task”, and that processing is distributed. That said, if the actual task can be performed by multiple processing units, then an application delivery controller could certainly be configured to recognize that a specific URL should be essentially sent to some other proxy/solution that performs the actual distribution, but the processing model here deviates sharply from the request-reply paradigm under which most applications today operate.

    DEVOPS CAN MAKE THIS HAPPEN

    I hate to sound-off too much on the “devops” trumpet, but one of the primary ways in which devops will be of significant value in the future is exactly in this type of practical implementation. Only by recognizing that many architectural patterns are applicable to not only application but infrastructure architecture can we start to apply a whole lot of “lessons that have already been learned” by developers and architects to emerging infrastructure architectural models. This abstraction and application from well-understood patterns in application design and architecture will be invaluable in designing the new network; the next iteration of network theory and implementation that will allow it to scale along with the applications it is delivering.


    Related blogs & articles:


    Follow me on Twitter View Lori's profile on SlideShare friendfeed icon_facebook

    AddThis Feed Button Bookmark and Share

    Read the original blog entry...

    More Stories By Lori MacVittie

    Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

    @ThingsExpo Stories
    The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
    Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
    The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
    P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
    Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
    Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
    Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
    The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
    Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.
    SYS-CON Events announced today that Windstream, a leading provider of advanced network and cloud communications, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Windstream (Nasdaq: WIN), a FORTUNE 500 and S&P 500 company, is a leading provider of advanced network communications, including cloud computing and managed services, to businesses nationwide. The company also offers broadband, phone and digital TV services to consumers primarily in rural areas.
    "There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
    The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com), moderated by Ashar Baig, Research Director, Cloud, at Gigaom Research, Nate Gordon, Director of T...

    ARMONK, N.Y., Nov. 20, 2014 /PRNewswire/ --  IBM (NYSE: IBM) today announced that it is bringing a greater level of control, security and flexibility to cloud-based application development and delivery with a single-tenant version of Bluemix, IBM's platform-as-a-service. The new platform enables developers to build ap...

    An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
    Technology is enabling a new approach to collecting and using data. This approach, commonly referred to as the "Internet of Things" (IoT), enables businesses to use real-time data from all sorts of things including machines, devices and sensors to make better decisions, improve customer service, and lower the risk in the creation of new revenue opportunities. In his General Session at Internet of @ThingsExpo, Dave Wagstaff, Vice President and Chief Architect at BSQUARE Corporation, discuss the real benefits to focus on, how to understand the requirements of a successful solution, the flow of ...
    The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
    "BSQUARE is in the business of selling software solutions for smart connected devices. It's obvious that IoT has moved from being a technology to being a fundamental part of business, and in the last 18 months people have said let's figure out how to do it and let's put some focus on it, " explained Dave Wagstaff, VP & Chief Architect, at BSQUARE Corporation, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
    Focused on this fast-growing market’s needs, Vitesse Semiconductor Corporation (Nasdaq: VTSS), a leading provider of IC solutions to advance "Ethernet Everywhere" in Carrier, Enterprise and Internet of Things (IoT) networks, introduced its IStaX™ software (VSC6815SDK), a robust protocol stack to simplify deployment and management of Industrial-IoT network applications such as Industrial Ethernet switching, surveillance, video distribution, LCD signage, intelligent sensors, and metering equipment. Leveraging technologies proven in the Carrier and Enterprise markets, IStaX is designed to work ac...
    C-Labs LLC, a leading provider of remote and mobile access for the Internet of Things (IoT), announced the appointment of John Traynor to the position of chief operating officer. Previously a strategic advisor to the firm, Mr. Traynor will now oversee sales, marketing, finance, and operations. Mr. Traynor is based out of the C-Labs office in Redmond, Washington. He reports to Chris Muench, Chief Executive Officer. Mr. Traynor brings valuable business leadership and technology industry expertise to C-Labs. With over 30 years' experience in the high-tech sector, John Traynor has held numerous...
    The 3rd International @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago. All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades.